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Variance for discrete random variables. The
variance of a random variable X is intended to give
a measure of the spread of the random variable. If
X takes values near its mean µ = E(X), then the
variance should be small, but if it takes values from
from µ, then the variance should be large.

The measure we’ll use for distance from the mean
will be the square of the distance from the mean,
(x − µ)2, rather than the distance from the mean,
|x−µ|. There are three reasons for using the square
of the distance rather than the absolute value of the
difference. First, the square is easier to work with
mathematically. For instance, x2 has a derivative,
but |x| doesn’t. Second, large distances from the
mean become more significant, and it has been ar-
gued that this is a desirable property. Most impor-
tant, though, is that the square is the right measure
to use in order to derive the important theorems in
the theory of probability, in particular, the Central
Limit Theorem.

Anyway, we define the variance Var(X) of a ran-
dom variable X as the expectation of the square of
the distance from the mean, that is,

Var(X) = E
(
(X − µ)2

)
.

As the square is used in the definition of vari-
ance, we’ll use the square root of the variance to
normalize this measure of the spread of the ran-
dom variable. The square root of the variance is
called the standard deviation, denoted in our text
as SD(X)

SD(X) =
√

Var(X) =
√
E
(
(X − µ)2

)
.

Just as we have a symbol µ for the mean, or expec-
tation, of X, we denote the standard deviation of
X as σ, and so the variance is σ2.

Pair of dice. Let’s take as an example the roll X
of one fair die. We know µ = E(X) = 3.5. What’s
the variance and standard deviation of X?

Var(X)

= E
(
(X − µ)2

)
=

6∑
x=1

(x− 3.5)2 P (X = x)

= 1
6

6∑
x=1

(x− 3.5)2

= 1
6

(
(−5

2
)2 + (−3

2
)2 + (−1

2
)2 + (1

2
)2 + (3

2
)2 + (5

2
)2
)

= 35
12

Since the variance is σ2 = 35
12

, therefore the stan-

dard deviation is σ =
√

35/12 ≈ 1.707.

Properties of variance. Although the defini-
tion works okay for computing variance, there is an
alternative way to compute it that usually works
better, namely,

σ2 = Var(X) = E(X2)− µ2

Here’s why that works.

σ2 = Var(x)

= E
(
(X − µ)2

)
= E(X2 − 2µX + µ2)

= E(X2)− 2µE(X) + µ2

= E(X2)− 2µµ+ µ2

= E(X2)− µ2

Here are a couple more properties of variance.
First, if you multiply a random variable X by a
constant c to get cX, the variance changes by a
factor of the square of c, that is

Var(cX) = c2 Var(X).

That’s the main reason why we take the square root
of variance to normalize it—the standard deviation
of cX is c times the standard deviation of X:

SD(cX) = |c| SD(x).
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(Absolute value is needed in case c is negative.) It’s
easy to show that Var(cX) = c2 Var(X):

Var(cX) = E
(
(cX − µ)2

)
= E

(
c2(X − µ)2

)
= c2E

(
(X − µ)2

)
= c2 Var(X)

The next important property of variance is that
it’s translation invariant, that is, if you add a con-
stant to a random variable, the variance doesn’t
change:

Var(X + c) = Var(X).

In general, the variance of the sum of two random
variables is not the sum of the variances of the two
random variables. But it is when the two random
variables are independent.

Theorem. If X and Y are independent random
variables, then Var(X + Y ) = Var(X) + Var(Y ).

Proof: This proof relies on the fact that E(XY ) =
E(X)E(Y ) when X and Y are independent.

Var(X + Y )

= E((X + Y )2)− µ2
X+Y

= E(X2 + 2XY + Y 2)− (µX + µY )2

= E(X2) + 2E(X)E(Y ) + E(Y 2)

− µ2
X − 2µXµY − µ2

Y

= E(X2) + 2µXµY + E(Y 2)

− µ2
X − 2µXµY − µ2

Y

= E(X2)− µ2
X + E(Y 2)− µ2

Y

= Var(X) + Var(Y )

q.e.d.

Variance of the binomial distribution. Let S
be the number of successes in n Bernoulli trials,
where the probability of success is p. This random
variable S has a binomial distribution, and we could
use its probability mass function to compute it, but
there’s an easier way. The random variable S is
actually a sum of n independent Bernoulli trials

S = X1 + X2 + · · · + Xn where each Xi equals 1
with probability p and 0 with probability q = 1−p.

By the preceding theorem,

Var(S) = Var(X1) + Var(X2) + · · ·+ Var(Xn).

We can determine that if we can determine the vari-
ance of one Bernoulli trial X.

Now, Var(X) = E(X2)− µ2, and for a Bernoulli
trial µ = p. Let’s compute E(X2). E(X2) =
P (X=0)0+P (X=1)1 = p. Therefore, the variance
of one Bernoulli trial is Var(X) = p− p2 = pq.

From that observation, we conclude the variance
of the binomial distribution is

Var(S) = nVar(X) = npq.

Taking the square root, we see that the standard
deviation of that binomial distribution is

√
npq.

That gives us the important observation that the
spread of a binomial distribution is proportional to
the square root of n, the number of trials.

The argument generalizes to other distributions:
The standard deviation of a random sample is pro-
portional to the square root of the number of trials
in the sample.

Variance of a geometric distribution. Con-
sider the time T to the first success in a Bernoulli
process. Its probability mass function is f(t) =
pqt−1. We saw that its mean was µ = E(T ) =
1
p
. We’ll compute its variance using the formula

Var(X) = E(X2)− µ2.

E(T 2) =
∞∑
t=1

t2pqt−1

= 1p+ 22pq + 32pq2 + · · ·+ n2pqn−1 + · · ·

The last power series we got when we evaluated
E(T ) was

1

(1− x)2
= 1 + 2x+ 3x2 + · · ·+ nxn−1 + · · ·

Multiply it by x to get

x

(1− x)2
= x+ 2x2 + 3x3 + · · ·+ nxn + · · ·
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Differentiate that to get

1 + x

(1− x)3
= 1 + 22x+ 32x2 + · · ·+ n2xn−1 + · · ·

Set x to q, and multiply the equation by p, and we
get

1 + q

p2
= p+ 22pq + 32pq2 + · · ·+ n2pqn−1 + · · ·

Therefore E(T 2) =
1 + q

p2
. Finally,

Var(X) = E(X2)− µ2 =
1 + q

p2
− 1

p2
=

q

p2
.
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