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I’ll try to make this introduction to Bayesian
statistics clear and short. First we’ll look as a
specific example, then the general setting, then
Bayesian statistics for the Bernoulli process, for the
Poisson process, and for normal distributions.

1 A simple example

Suppose we have two identical urns—urn A with 5
red balls and 10 green balls, and urn B with 10 red
balls and 5 green balls. We’ll select randomly one
of the two urns, then sample with replacement that
urn to help determine whether we chose A or B.

Before sampling we’ll suppose that we have
“prior” probabilities of 1

2
, that is, P (A) = 1

2
and

P (B) = 1
2
.

Let’s take a sample X = (X1, X2, . . . , Xn) of size
n, and suppose that k of the n balls we select with
replacement are red. We want to use that infor-
mation to help determine which of the two urns,
A or B, we chose. That is, we’ll compute P (A|X)

and P (B|X). In order to do find those conditional
probabilities, we’ll use Bayes’ formula. We can eas-
ily compute the reverse probabilities

P (X|A) =
(

1
3

)k(2
3

)n−k
P (X|B) =

(
1
3

)n−k(2
3

)k
so by Bayes’ formula we derive the posterior prob-
abilities

P (A|X) =
P (X|A)P (A)

P (X|A)P (A) + P (X|B)P (B)

=

(
1
3

)k(2
3

)n−k 1
2(

1
3

)k(2
3

)n−k 1
2

+
(

1
3

)n−k(2
3

)k 1
2

=
2n−k

2n−k + 2k

P (B|X) = 1− P (A|X)

=
2k

2n−k + 2k

For example, suppose that in n = 10 trials we got
k = 4 red balls. The posterior probabilities would
become P (A|X) = 4

5
and P (B|X) = 1

5
.
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Before the experiment we chose the two urns each
with probability 1

2
, that is, the probability of choos-

ing a red ball was either p = 1
3

or p = 2
3

each with
probability 1

2
. That’s shown in the prior graph on

the left. After drawing n = 10 balls out of that urn
(with replacement) and getting k = 4 red balls,
we update the probabilities. That’s shown in the
posterior graph on the right.

How this example generalizes. In the example
we had a discrete distribution on p, the probabil-
ity that we’d chose a red ball. This parameter p
could take two values: p could be 1

3
with probabil-

ity 1
2

when we chose urn A, or p could be 2
3

with
probability 1

2
when we chose urn B. We actually

had a prior distribution on the parameter p. After
taking into consideration the outcome k of an ex-
periment, we had a different distribution on p. It
was a conditional distribution p|k.

In general, we won’t have only two different val-
ues on a parameter, but infinitely many; we’ll have
a continuous distribution on the parameter instead
of a discrete one.

2 The basic principle

The setting for Bayesian statistics is a family of dis-
tributions parametrized by one or more parameters
along with a prior distribution for those parame-
ters. In the example above we had a Bernoulli pro-
cess parametrized by one parameter p the probabil-
ity of success. In the example the prior distribution
for p was discrete and had only two values, 1

3
and

2
3

each with probability 1
2
.

A sample X is taken, and a posterior distribution
for the parameters is computed.

Let’s clarify the situation and introduce termi-
nology and notation in the general case where X is
a discrete random variable, and there is only one
discrete parameter θ. (In practice, θ is a contin-
uous parameter, but in the example above it was
discrete, and for this introduction, let’s take θ to
be discrete). In statistics, we don’t know what

the value of θ is; our job is to make inferences
about θ. The way to find out about θ is to per-
form many trials and see what happens, that is,
to select a random sample from the distribution,
X = (X1, X2, ..., Xn), where each random variable
Xi has the given distribution. The actual outcomes
that are observed I’ll denote x = (x1, x2, . . . , xn).

Now, different values of θ lead to different proba-
bilities of the outcome x, that is, P (X=x | θ) varies
with θ. In the so-called “classical” statistics, this
probability is called the likelihood of θ given the
outcome x, denoted L(θ |x). The reason the word
likelihood is used is the suggestion that the real
value of θ is likely to be one with a higher prob-
ability P (X=x | θ). But this likelihood L(θ |x) is
not a probability about θ. (Note that “classical”
statistics is much younger than Bayesian statistics
and probably should have some other name.)

What Bayesian statistics does is replace this con-
cept of likelihood by a real probability. In order
to do that, we’ll treat the parameter θ as a ran-
dom variable rather than an unknown constant.
Since it’s a random variable, I’ll use an uppercase
Θ. This random variable Θ itself has a probability
mass function, which I’ll denote fΘ(θ) = P (Θ=θ).
This fΘ is called the prior distribution on Θ. It’s
the probability you have before considering the in-
formation in X, the results of an observation.

The symbol P (X=x | θ) really is a conditional
probability now, and it should properly be writ-
ten P (X=x |Θ=θ), but I’ll abbreviate it simply as
P (x | θ) and leave out the references to the random
variables when the context is clear. Using Bayes’
law we can invert this conditional probability. In
full, it says

P (Θ=θ |X=x) =
P (X=x |Θ=θ)P (Θ=θ)

P (X=x)

but we can abbreviate that as

P (θ |x) =
P (x | θ)P (θ)

P (x)
.

This conditional probability P (θ |x) is called the
posterior distribution on Θ. It’s the probability you
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have after taking into consideration new informa-
tion from an observation. Note that the denomi-
nator P (x) is a constant, so the last equation says
that the posterior distribution P (θ |x) is propor-
tional to P (x | θ)P (θ). I’ll write proportions with
the traditional symbol ∝ so that the last statement
can be written as

P (θ |x) ∝ P (x | θ)P (θ).

Using proportions saves a lot of symbols, and we
don’t lose any information since the constant of pro-
portionality P (x) is known.

When we discuss the three settings—Bernoulli,
Poisson, and normal—the random variable X will
be either discrete or continuous, but our parame-
ters will all be continuous, not discrete (unlike the
simple example above where our parameter p was
discrete and only took the two values 1

3
and 2

3
).

That means we’ll be working with probability den-
sity functions instead of probability mass functions.
In the continuous case there are analogous state-
ments. In particular, analogous to the last state-
ment, we have

f(θ |x) ∝ f(x | θ)f(θ)

where f(θ) is the prior density function on the pa-
rameter Θ, f(θ |x) is the posterior density function
on Θ, and f(x | θ) is a conditional probability or a
conditional density depending on whether X is a
continuous or discrete random variable.

3 The Bernoulli process.

A single trial X for a Bernoulli process, called a
Bernoulli trial, ends with one of two outcomes—
success where X = 1 and failure where X = 0.
Success occurs with probability p while failure oc-
curs with probability q = 1− p.

The term Bernoulli process is just another name
for a random sample from a Bernoulli population.
Thus, it consists of repeated independent Bernoulli
trials X = (X1, X2, . . . , Xn) with the same param-
eter p.

The problem for statistics is determining the
value of this parameter p. All we know is that it
lies between 0 and 1. We also expect the ratio k/n
of the number of successes k to the number trials n
to approach p as n approaches∞, but that’s a the-
oretical result that doesn’t say much about what p
is when n is small.

Let’s see what the Bayesian approach says here.
We start with a prior density function f(p) on p,
and take a random sample x = (x1, x2, . . . , xn).
Then the posterior density function is proportional
to a conditional probability times the prior density
function

f(p |x) ∝ P (X=x | p) f(p).

Suppose, now, that there are k successes occur
among the n trials x. With our convention that
Xi = 1 means the trial Xi ended in success, that
means that k = x1 + x2 + · · ·+ xn. Then

P (X=x | p) = pk(1− p)n−k.

Therefore,

f(p |x) ∝ pk(1− p)n−k f(p).

Thus, we have a formula for determining the poste-
rior density function f(p |x) from the prior density
function f(p). (In order to know a density func-
tion, it’s enough to know what it’s proportional to,
because we also know the integral of a density func-
tion is 1.)

But what should the prior distribution be? That
depends on your state of knowledge. You may al-
ready have some knowledge about what p might
be. But if you don’t, maybe the best thing to do
is assume that all values of p are equally probable.
Let’s do that and see what happens.

So, assume now that the prior density function
f(p) is uniform on the interval [0, 1]. So f(p) = 1
on the interval, 0 off it. Then we can determine the
posterior density function. On the interval [0, 1],

f(p |x) ∝ pk(1− p)n−k f(p)

= pk(1− p)n−k
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That’s enough to tell us this is the beta distribu-
tion Beta(k+ 1, n+ 1−k) because the probability
density function for a beta distribution Beta(α, β)
is

f(x) =
1

B(α, β)
xα−1(1− x)β−1

for 0 ≤ x ≤ 1, where B(α, β) is a constant, namely,
the beta function B evaluated at the arguments α
and β.

Note that the prior distribution f(p) we chose
was uniform on [0, 1], and that’s actually the beta
distribution Beta(1, 1).

Let’s suppose you have a large number of balls in
an urn, every one of which is either red or green, but
you have no idea how many there are or what the
fraction p of red balls there are. They could even
be all red or all green. You decide to make your
prior distribution on p uniform, that is Beta(1, 1).
This uniform prior density is shaded green in the
first figure.

Now you choose one ball at random and put it
back. If it was red, your new distribution on p is
Beta(2, 1). The density function of this distribu-
tion is fP (p) = 2p. It’s shaded pink in the figure.
The probability is now more dense near 1 and less
near 0.

Let’s suppose we do it again and get a green ball.
Now we’ve got Beta(2, 2). So far, one red and one

green, and the probability is shifted back towards
the center. Now fP (p) = 6p(1−p). It’s shaded blue
in the figure.

Suppose the next three are red, red, and green,
in that order. After each one, we can update
the distribution. Next will be Beta(3, 2), then
Beta(4, 2), and then Beta(4, 3) They appear in
the next figure. The first green, second pink, and
third blue.

With each new piece of information the slowly nar-
rows. We can’t say much yet with only 5 drawings,
3 reds and 2 greens. A sample of size 5 doesn’t
say much. Even with so little information, we can
still pretty much rule out p being less than 0.05 or
greater than 0.99.

Let’s see what the distribution would look like
with more data. Take three more cases. First,
when n = 10 and we’ve drawn red balls 6 times.
Then when n = 20 and we’ve gotten 14 red
balls. And finally when n = 50 and we got 33
reds. Those have the three distributions Beta(7, 5)
graphed in green, Beta(15, 7) graphed in red, and
Beta(34, 18) graphed in blue. These are much
skinnier distributions, so we’ll squeeze the vertical
scale.
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Even after 50 trials, about all we can say is that p
is with high probability between 0.4 and 0.85. We
can actually compute that high probability as well,
since we have a distribution on p.

Math 218 Home Page at
http://math.clarku.edu/~djoyce/ma218/
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