
Confidence intervals
Math 218, Mathematical Statistics

D Joyce, Spring 2016

Introduction to confidence intervals. Al-
though estimating a parameter θ by a particular
number θ̂ may be the simplest kind of statistical
inference, that often is not very satisfactory. Some
indication of the spread of the likely values of θ
explains a lot more. One way that’s done is with
confidence intervals. A typical confidence interval
is a 95% confidence interval [L,U ] for θ and that’s
given by two statistics, L and U such that

P (L ≤ θ ≤ U) = 0.95.

Other confidence levels besides 95% are defined
similarly.

This concept is best explained with an example.
Let’s take a normal distribution with a known value
for σ2, but an unknown value for µ, and our job is
to come up with a confidence interval for µ. The
sample mean X is a point estimator for µ, and we
know that X is a normal distribution with mean µ
and variance σ2/n. From the table for the standard
normal distribution, the probability that a stan-
dard normal random variable Z lies between −1.96
and 1.96 is 95%. Therefore,

P

(
µ− 1.96

σ√
n
≤ X ≤ µ+ 1.96

σ√
n

)
= 0.95.

We can rewrite the first inequality µ − 1.96 σ√
n
≤

X as µ ≤ X + 1.96 σ√
n
, and we can rewrite the

second inequality X ≤ µ+1.96 σ√
n

as X−1.96 σ√
n
≤

µ. Therefore, the statement of probability can be
rewritten as

P

(
X − 1.96

σ√
n
≤ µ ≤ X + 1.96

σ√
n

)
= 0.95.

We now have two statistics, L = X − 1.96 σ√
n

and

U = X + 1.96 σ√
n
, so that P (L ≤ µ ≤ U) = 0.95.

We’ll look at an example and discuss some of the
difficulties of interpreting the meaning of confidence
intervals and apply interval estimates to bent coins.

Interval estimates for Bernoulli distribu-
tions. Suppose we have a bent coin with unknown
probability p of heads, so the unknown probability
of tails is q = 1− p. The mean of this distribution
is µ = p, and its variance is σ2 = pq.

The sample mean X, which is the fraction of
heads that occur in n trials, has mean µX = µ = p,
variance σ2

X
= σ2/n = pq/n, and standard devia-

tion σX = σ/
√
n =

√
pq/n.

If n is large, then X is approximately normal, so
we can apply the results of our last discussion on
confidence intervals. We found that

P

(
X − 1.96

σ√
n
≤ µ ≤ X + 1.96

σ√
n

)
= 0.95.

So that a 95% confidence interval for µ is[
X − 1.96

σ√
n
,X + 1.96

σ√
n

]
.

We don’t know what σ is, but we do know σ2 =
pq = p(1−p). Since p is between 0 and 1, therefore
p(1 − p) is between 0 and 1

4
, and the maximum 1

4

occurs when p = 1
2
. Therefore, σ2 is between 0 and

1
4
, so σ is between 0 and 1

2
2.

Thus, if we replace
[
X − 1.96 σ√

n
, X + 1.96 σ√

n

]
,

by
[
X − 1.96 1

2
√
n
, X + 1.96 1

2
√
n

]
, we will have an

interval that contains a 95% confidence interval no
matter what the value of σ is. Since 1.96 is about
2, therefore

P (X − 1/
√
n ≤ µ ≤ X + 1/

√
n) ≥ 0.95,

so [X − 1/
√
n,X + 1/

√
n] includes the unknown

p = µ at least 95% of the time. Note that the
length of this interval is 2/

√
n.

Now suppose we have that bent coin with un-
known p and we want to estimate p to one digit,

1



with 95% confidence. The phrase “to within one
digit” is usually interpreted to mean within 0.05,
and that means the length of the interval is 0.1.
How many times to we have to flip the coin? We
want 2/

√
n = 0.1, so that means n = 400. Thus,

we’ve justified the rule of thumb that to get one
digit of accuracy for the probability of success p,
400 trials are needed. To get two digits of accu-
racy, 40000 trials are needed, and that’s an awful
lot of coin flips.
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