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Quick summary. Analysis of the model for sim-
ple linear regression

Yi = β0 + β1xi + εi

including sst (sum of the squared errors), sst (to-
tal sum of squares), and ssr (regression sum of
squares), where

sst = ssr + sse

and a bit on correlation.

r2 =
ssr

sst
= 1− sse

sst
.

Furthermore r = β̂1sx/sy.
Next, we’ll estimate the error variance σ2 of the

model. We’ll start looking at statistical inferences
based on the simple linear regression model.

Estimating σ2. There are three parameters in
the simple linear regression model, β1, β2, and σ2.
We’ve already got estimators for the first two. We
need an estimator for σ2.

As you would expect, some sort of sample vari-
ance ought to do it. Such a thing is

s2 =

∑
e2i

n− 2
=

sse

n− 2
.

This is an unbiased estimator of σ2.
More importantly, for statistical inferences, by

appropriately scaling the sample variance, we get a
χ2 distribution

(n− 2)S2

σ2
=

sse

σ2
∼ χ2

n−2

(Note how this shows dividing by n−2 or n doesn’t
affect computations since whichever is used, it has
to be scaled away to get the χ2 distribution.)

Statistical inferences based on the model.
We have three estimators β̂0 , β̂1, and S2 =
sse/(n − 1) for the three unknown parameters β0,
β1, and σ2. The first two are normal distributions
with means being the parameters they’re estimat-
ing and standard deviations

SD(β0) = σ

√∑
x2i

nSxx

SD(β1) =
σ√
Sxx

so we can use them to make inferences about β0
and β1. If σ happens to be known, or if n is large,
we can standardize them and make z-tests and z-
confidence intervals.

But if n is small, we’ll need t-tests. In order to do
that, we’ll have to replace the unknown standard
deviation σ by the sample standard deviation s,
so the standard deviations SD(β0) and SD(β1) are
replaced by estimated standard deviations

SE(β0) = s

√∑
x2i

nSxx

SE(β1) =
s√
Sxx

to get t-distributions with (n − 2) degrees of free-
dom. Precisely,

β̂0 − β0
SE(β̂0)

∼ tn−2 and
β̂1 − β1
SE(β̂1)

∼ tn−2.

For example, the two-sided confidence intervals
for β0 and β1 have endpoints

β̂0 ± tn−2,α/2SE(β̂0) and β̂1 ± tn−2,α/2SE(β̂1).

The third estimator S2 can be scaled to have a
χ2 distribution with n− 2 degrees of freedom

(n− 2)S2

σ2
=

sse

σ2
.
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Degrees of freedom. When we have n data val-
ues y1, . . . , yn, we’ve got a point y = (y1, . . . , yn) in
Rn, and that point can be any point. There are n
degrees of freedom in specifying y.

If we translate these all by the sample mean y to
the values y1 − y, . . . , yn − y, we also get a point
u = (u1, . . . , un) = (y1 − y, . . . , yn − y) in Rn, but
it can’t be just any point in Rn because its coor-
dinates satisfy the equation

∑
ui = 0. In other

words, the point u lies in a hyperplane of Rn, that
is, a linear subspace of dimension n − 1. So there
are n− 1 degrees of freedom in specifying u.

This means that the total sum of squares SST =∑
(yi − y) has n − 1 degrees of freedom since it is

a function of a point (the u above) that has n − 1
degrees of freedom.

The error sum of squares sse =
∑
εi =

∑
(yi −

ŷi)
2 turns out to have n−2 degrees of freedom since

the point v = (y1 − ŷ1, . . . , yn − ŷn) satisfies two
equations in its coordinates. The regression sum of
squares ssr has only 1 degree of freedom.

Mean square error (mse) and Mean square
regression (msr). At the moment the mse and
msr aren’t so important, but there’s a connection
to the t-statistic mentioned above. They’ll get more
interesting when we do multiple regression.

These are just the sse and ssr divided by their
degrees of freedom. We’re doing simple regression
right now, so ssr has only 1 degree of freedom. But
later we’ll do multiple regression where there are
k independent variables, and there ssr will have
k degrees of freedom instead of just 1 degree of
freedom, while sse will have n− (k + 1) degrees of
freedom instead of n− 1 degrees of freedom.

The ratio msr
mse is a square of that t-statistic men-

tioned above.

msr

mse
=

ssr

s2
=
β̂2Sx,x
s2

=

(
β̂1

s/
√
Sxx

)2

=

(
β̂1

SE(β̂1)

)2

= t2

Furthermore, the square of a t-statistic is an F -
statistic, specifically, an F1,ν-statistic. When we
look at multiple regression, we’ll see some of these
1’s will be replaced by k’s.

Confidence and prediction intervals for sim-
ple linear regression. In the model for simple
linear regression

Yi = β0 + β1xi + εi

different values of x produce different predictions
for Y = β0 + β1x + ε. After getting n data values,
we compute the least squares line

y = β̂0 + β̂1x,

and we can determine confidence intervals for the
parameters β0, β1, and σ2.

But, we can do more. Suppose we set the predic-
tor variable x to some specified value, x∗. (It would
also be reasonable to denote the new values with a
subscript of n + 1 rather than a superscript of ∗.)
That introduces a new Y value

Y ∗ = β0 + β1x
∗ + ε∗

where ε∗ is a new independent error random vari-
able with the same normal distribution as the other
εi’s, namely, Normal(0, σ2). Therefore, the ran-
dom variable Y ∗ is Normal(β0 + β1x

∗, σ2).
Our model gives a predicted value of Y ∗:

ŷ∗ = β̂0 + β̂1x
∗.

We’ll denote the mean of Y ∗ by µ∗, thus

µ∗ = E(Y ∗) = β0 + β1x
∗.
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We don’t know what µ∗ is since we don’t know β0
and β1, but we have a predicted value for it, which
is the same as the predicted value for Y ∗:

µ̂∗ = β̂0 + β̂1x
∗.

Although these predicted values are the same, when
we use them to determine intervals for what they
predict, namely, y∗ and µ∗, respectively, we’ll get
different width intervals since the variances are
much smaller for the mean.

A prediction interval (PI) for Y ∗ at α is an inter-
val centered at ŷ∗ such that the probability that Y ∗

lies in that interval is 100(1−α)%. It works out to
be that its endpoints are

ŷ∗ ± tn−2,α/2 s

√
1 +

1

n
+

(x∗ − x)2

Sxx

where s =
√
mse is the estimator of σ as we’ve saw

before.
This interval is closely related to the confidence

interval for µ∗ = β0+β1x
∗. At the significance level

α, it has endpoints

µ̂∗ ± tn−2,α/2 s

√
1

n
+

(x∗ − x)2

Sxx
.

If you graph the endpoints of either of these two
intervals with x∗ on the x-axis, you’ll get a pair of
hyperbolas, one above the least squares line, the
other equally far below it. When x∗ is close to x,
the hyperbolas are close, and that indicates that
the prediction interval for Y ∗ and the confidence
interval for µ∗ are shorter there. But when x∗ is far
from x, the hyperbolas spread apart, so the inter-
vals there are large. In other words, good predic-
tions can be made near x, not so good predictions
far from x.

The prediction interval for the next observation
Y ∗ is, of course, much larger than the confidence in-
terval for for the mean µ∗. Graphically, the predic-
tion hyperbola for Y ∗ are much further away from
the least squares line than the hyperbola for µ∗.

Regression diagnostics. A basic question is: do
the data support the hypotheses necessary for the
simple linear regression model? A preliminary test
we’ve already seen is to make a scatter plot of the
data (x1, y1), . . . , (xn, yn). If it’s obvious that the
plot is nonlinear, then maybe the model is not ap-
propriate.

Other tests can be made after fitting the least
squares line, and some of these depend on making
a scatter plot of the residuals ei = yi − ŷi, that is
the plot of (x1, e1), . . . , (xn, en).

If the hypotheses for the regression model is cor-
rect, then the ei’s are normally distributed with
mean 0 and variance close to (but a little less than)
σ2. They are not independent since

∑
ei = 0 and∑

xiei = 0 as shown in the text.
If the residual scatter plot shows some pattern,

then the simple linear model may not be the best.
That’s not necessarily a bad thing as the pattern
may indicate better models.

For instance, in the tread wear example in the
text, there’s a clear parabolic form to the residual
plot. That suggests a quadratic model might be
better. We’ll see after we’ve introduced multiple
linear regression that quadratic models can be sub-
sumed in those models, so we’ll see this example
later.

There are other things that the residual plot can
show, but it may take a large n to see them. The
model assumes that the errors εi have the same vari-
ance for all i. If in the plot it appears that the resid-
uals are close to 0 at one end, but scatter far from 0
at the other, then a transformation may be needed
before applying the model, that is, some linearizing
transformation needs to be applied to the y-values
to make the variance of the resulting errors more
uniform across all the x-values. Examples in the
text use the log function and the reciprocal func-
tion as transformations.

Math 218 Home Page at
http://math.clarku.edu/~djoyce/ma218/
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