

Multiple linear regression Math 218, Mathematical Statistics D Joyce, Spring 2016

This is a very common method used to understand numerical relations among numerical factors. For this method, we assume that we have k independent variables x_1, \ldots, x_k that we can set, then they probabilistically determine an outcome Y. Furthermore, we assume that Y is linearly dependent on the factors according to

$$Y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k + \epsilon$$

where ϵ is a normal error. This is just like we had for simple linear regression except k doesn't have to be 1.

In an experiment, we have n observations, n typically being much more than k. For the i^{th} observation we set the independent variables to the values

$$x_{i1}, x_{i2} \ldots, x_{ik}$$

and measure a value y_i for the random variable Y_i . Thus, the model can be described by the equations

$$Y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_k x_{ik} + \epsilon_i$$

for i = 1, 2, ..., n, where the errors ϵ_i are independent normal variables each with mean 0 and the same unknown variance σ^2 .

Altogether this model for multiple linear regression has k + 2 unknown parameters: $\beta_0, \beta_1, \ldots, \beta_k$, and σ^2 .

When k was equal to 1, we found the least squares line $y = \hat{\beta}_0 + \hat{\beta}_1 x$. It was a line in the plane \mathbf{R}^2 . Now with $k \ge 1$, we'll have a least squares hyperplane

$$y = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2 + \dots + \hat{\beta}_k x_k$$

in \mathbf{R}^{k+1} . The way to find the estimators $\hat{\beta}_0, \hat{\beta}_1, \ldots$, and $\hat{\beta}_k$ is exactly the same, namely, take the partial derivatives of the squared error

$$Q = \sum_{i=1}^{n} (y_i - (\beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_k x_{ik}))^2$$

with respect to the k + 1 variables β_0, \ldots, β_k , set them all to 0, and solve to find the critical point. There will only be one critical point except in exceptional situations, like when n < k, and it will give the minimum least squared error Q. To find that value, k + 1 linear equations need to be solved simultaneously for k + 1 unknowns, so methods of linear algebra are needed, but not very advanced methods since it's just solving a simultaneous system of linear equations.

When that system is solved we have fitted values

$$\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_{i1} + \hat{\beta}_2 x_{i2} + \dots + \hat{\beta}_k x_{ik}$$

for i = 1, ..., n that should be close to the actual values y_i . The differences are the residuals

$$e_i = y_i - \hat{y}_i.$$

The error sum of squares, SSE, is defined as before, namely as

$$SSE = \sum e_i^2$$

and it is used along with the total sum of squares,

$$SST = \sum (y_i - \overline{y})^2$$

and the regression sum of squares

$$SSR = \sum (\hat{y}_i - \overline{y})^2$$

exactly as in the case when k = 1, so that

$$SST = SSE + SSR$$

$$r^2 = \frac{\text{SSR}}{\text{SST}} = 1 - \frac{\text{SSE}}{\text{SST}}.$$

The only difference is that we don't have a correlation coefficient r. Instead, we define the positive square root of r^2 to be r and we call it the *multiple* correlation coefficient.

We'll look at example 11.1 in the text next.

Math 218 Home Page at

http://math.clarku.edu/~djoyce/ma218/

and