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This is a very common method used to under-
stand numerical relations among numerical factors.
For this method, we assume that we have k in-
dependent variables x1, . . . , xk that we can set,
then they probabilistically determine an outcome
Y . Furthermore, we assume that Y is linearly de-
pendent on the factors according to

Y = β0 + β1x1 + β2x2 + · · · + βkxk + ε

where ε is a normal error. This is just like we had
for simple linear regression except k doesn’t have
to be 1.

In an experiment, we have n observations, n typ-
ically being much more than k. For the ith observa-
tion we set the independent variables to the values

xi1, xi2 . . . , xik

and measure a value yi for the random variable Yi.
Thus, the model can be described by the equations

Yi = β0 + β1xi1 + β2xi2 + · · · + βkxik + εi

for i = 1, 2, . . . , n, where the errors εi are indepen-
dent normal variables each with mean 0 and the
same unknown variance σ2.

Altogether this model for multiple linear regres-
sion has k + 2 unknown parameters: β0, β1, . . . , βk,
and σ2.

When k was equal to 1, we found the least
squares line y = β̂0 + β̂1x. It was a line in the plane
R2. Now with k ≥ 1, we’ll have a least squares
hyperplane

y = β̂0 + β̂1x1 + β̂2x2 + · · · + β̂kxk

in Rk+1. The way to find the estimators β̂0, β̂1, . . .,
and β̂k is exactly the same, namely, take the partial
derivatives of the squared error

Q =
n∑

i=1

(yi − (β0 + β1xi1 + β2xi2 + · · · + βkxik))2

with respect to the k + 1 variables β0, . . . , βk, set
them all to 0, and solve to find the critical point.
There will only be one critical point except in ex-
ceptional situations, like when n < k, and it will
give the minimum least squared error Q. To find
that value, k+ 1 linear equations need to be solved
simultaneously for k + 1 unknowns, so methods of
linear algebra are needed, but not very advanced
methods since it’s just solving a simultaneous sys-
tem of linear equations.

When that system is solved we have fitted values

ŷi = β̂0 + β̂1xi1 + β̂2xi2 + · · · + β̂kxik

for i = 1, . . . , n that should be close to the actual
values yi. The differences are the residuals

ei = yi − ŷi.

The error sum of squares, sse, is defined as before,
namely as

sse =
∑

e2i

and it is used along with the total sum of squares,

sst =
∑

(yi − y)2

and the regression sum of squares

ssr =
∑

(ŷi − y)2

exactly as in the case when k = 1, so that

sst = sse + ssr

and
r2 =

ssr

sst
= 1 − sse

sst
.

The only difference is that we don’t have a corre-
lation coefficient r. Instead, we define the positive
square root of r2 to be r and we call it the multiple
correlation coefficient.

We’ll look at example 11.1 in the text next.
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