Math 125 Modern Algebra
First Test Answers
March 2017

Scale. 80–100 A, 60–79 B, 40–59 C. Median 72.

1. [20] On fields. Recall the definition of a field. A field \(F \) consists of
 1. a set, also denoted \(F \) and called the underlying set of the field;
 2. a binary operation \(+ : F \times F \to F \) called addition, which maps an ordered pair \((x, y) \in F \times F\) to its sum denoted \(x + y \);
 3. another binary operation \(\cdot : F \times F \to F \) called multiplication, which maps an ordered pair \((x, y) \in F \times F\) to its product denoted \(x \cdot y \), or more simply just \(xy \); such that
 4. addition is commutative, that is, for all elements \(x \) and \(y \), \(x + y = y + x \);
 5. multiplication is commutative, that is, for all elements \(x \) and \(y \), \(xy = yx \);
 6. addition is associative, that is, for all elements \(x \), \(y \), and \(z \), \((x + y) + z = x + (y + z) \);
 7. multiplication is associative, that is, for all elements \(x \), \(y \), and \(z \), \((xy)z = x(yz) \);
 8. there is an additive identity, an element of \(F \) denoted \(0 \), such that for all elements \(x \), \(0 + x = x \);
 9. there is a multiplicative identity, an element of \(F \) denoted \(1 \), such that for all elements \(x \), \(1x = x \);
 10. there are additive inverses, that is, for each element \(x \), there exists an element \(y \) such that \(x + y = 0 \); such a \(y \) is called the negation of \(x \);
 11. there are multiplicative inverses of nonzero elements, that is, for each nonzero element \(x \), there exists an element \(y \) such that \(xy = 1 \); such a \(y \) is called a reciprocal of \(x \);
 12. multiplication distributes over addition, that is, for all elements \(x \), \(y \), and \(z \), \(x(y + z) = xy + xz \); and
 13. \(0 \neq 1 \).

Carefully prove that 0 times any element in a field is 0, \(0x = 0 \), using only the definition above and no other properties of a field (unless you prove them as well). Justify every statement and equation. Write full sentences.

There are many possible proofs. Here is one.

Let \(x \) be an element of the field. Since 0 is the additive identity (8), therefore \(0 + 0 = 0 \). Multiply that equation by \(x \). Then \(x(0 + 0) = x0 \). Since multiplication distributes over addition (12), therefore \(x0 + x0 = x0 \). Let \(y \) be the additive inverse of \(x0 \) (10) so that \(x0 + y = 0 \). Add \(y \) to each side of the equation \(x0 + x0 = x0 \). Then \((x0 + x0) + y = x0 + y \). Since addition is associative (6), therefore \(x0 + (x0 + y) = x0 + y \). But \(x0 + y = 0 \), so \(x0 + 0 = 0 \). And since 0 is the additive identity (8 again), therefore \(x0 = 0 \). Finally, multiplication is commutative (5), so \(0x = 0 \).

Q.E.D.

2. [15; 5 points each part] On rings.
 a. Give an example of a ring \(R \) and two elements \(x \) and \(y \) in \(R \), neither of which is 0, but the product \(xy \) of the two elements is 0.
 b. Give an example of a ring of characteristic 0.
 c. Give an example of a subring of the field \(\mathbb{R} \) of real numbers other than \(\mathbb{R} \) itself.

\(\mathbb{Z} \) and \(\mathbb{Q} \) are both subrings of \(\mathbb{R} \).

3. [20; 5 points each part] On groups. For each of the following, state if it is a group or not. If not, explain why not, but if so, you don’t have to give a reason why.
 a. The set \{1, -1, i, -i\} of four complex numbers under addition.
 b. The set \{1, -1, i, -i\} of four complex numbers under multiplication.
 c. The set of six functions including \(f(x) = \frac{1}{x} \), \(g(x) = 1 - x \), \(h(x) = \frac{1}{1 - x} \), \(i(x) = x \), \(k(x) = \frac{x - 1}{x} \), and \(\ell(x) = \frac{x}{x - 1} \) under composition.
 d. The set of \(2 \times 2 \) matrices in \(M_2(\mathbb{R}) \) with positive determinants under matrix multiplication.
 e. The set of 2 \(\times \) 2 matrices in \(M_2(\mathbb{R}) \) with positive determinants under matrix multiplication and inverses. It’s a subgroup of the general linear group \(GL(2, \mathbb{R}) \).

4. [16; 8 points each part] On number theory.
 a. Draw a Hasse diagram of the divisors of 30.
There are eight divisors of 30. The Hasse diagram has 1 at the bottom; 2, 3, and 5 above 1; 6 above 2 and 3; 10 above 2 and 5; 15 above 3 and 5; and 30 at the top.

b. Use the Euclidean algorithm to show that the greatest common divisor of 105 and 154 is 7. Show your work.

Since $154 - 105 = 49$, therefore $\gcd(105, 154)$ is equal to $\gcd(105, 49)$. Subtracting 49 twice from 105 gives 7, so $\gcd(105, 49)$ is equal to $\gcd(7, 49)$. Since 7 divides 49, therefore 7 is the greatest common divisor.

5. [15] On ordered fields. Recall that an order on a field F is determined by a subset P whose elements are called positive such that (1) F is partitioned into three parts: P, $\{0\}$, and $N = \{x \in F : x \in P\}$, (2) the sum of two positive elements is positive; and (3) the product of two positive elements is positive.

Explain in your own words why a field of prime characteristic p cannot have an order of this kind.

Suppose there were an order of this kind for a field prime characteristic p. Since 1 is positive, and positive elements are closed under addition, therefore $1 + 1 + \cdots + 1$ is positive. But when there are p terms in the sum, that sum is equal to 0 which is not positive. That contradicts condition (1). Therefore there is no such order.

6. [16; 8 points each part] On finite fields. We have had examples and exercises on finite fields. The Galois field $GF(2)$ is the ring \mathbb{Z}_2 of integers modulo 2. In this exercise you’ll construct the Galois field $GF(8)$ as an extension of \mathbb{Z}_2.

a. Find at least one of the following cubic polynomials that has no root in \mathbb{Z}_2: x^3, $x^3 + 1$, $x^3 + x$, $x^3 + x + 1$, $x^3 + x^2$, $x^3 + x^2 + 1$, $x^3 + x^2 + x$, $x^3 + x^2 + x + 1$. That is to say, if $f(x)$ is the polynomial, its value at neither of the two elements of \mathbb{Z}_2 is equal to 0.

0 will be a root of any of those polynomials that don’t have the constant 1. That leaves the four polynomials that do have the constant 1. 1 will be a root of any polynomial with 2 or 4 terms. That leaves two polynomials: $x^3 + x + 1$ and $x^3 + x^2 + 1$. Either one will do.

Now let $f(x)$ be that polynomial you found in part a. Let F be the 3-dimensional vector space over \mathbb{Z}_2 of 8 elements where each element is written as $ax^2 + bx + c$ with a, b, and c each in \mathbb{Z}_2. Define multiplication on F so that $f(x) = 0$. (So, for instance, if $f(x) = x^3 + x^2 + x + 1$, then $x^3 = -x^2 - x - 1$.)

b. With your choice of $f(x)$, F will be a field where every nonzero element has a reciprocal. Determine the reciprocal of x in F, that is, find some polynomial whose product with x is equal to 1 modulo $f(x)$.

Let $f(x) = x^3 + x + 1$. Then $x^3 + x + 1 = 0$ which can be rewritten $x^3 + x = 1$. Divide by x to conclude $\frac{1}{x} = x^2 + 1$. (In fact the seven nonzero elements of $GF(8)$ form a cyclic group under multiplication.)

| x^n | 0 | 1 | x^2 | $x + 1$ | $x^2 + x$ | $x^2 + x + 1$ | $x^2 + 1$ |