Cache Memories

Slides Courtesy of:
Randy Bryant and Dave O’Hallaron

Today

- Cache memory organization and operation
- Performance impact of caches
 - The memory mountain
 - Rearranging loops to improve spatial locality
 - Using blocking to improve temporal locality
Cache Memories

- **Cache memories** are small, fast SRAM-based memories managed automatically in hardware.
 - Hold frequently accessed blocks of main memory
- CPU looks first for data in caches (e.g., L1, L2, and L3), then in main memory.
- Typical system structure:

![Diagram of computer architecture](image)

General Cache Organization (S, E, B)

\[E = 2^e \text{ lines per set} \]

\[S = 2^s \text{ sets} \]

\[C = S \times E \times B \text{ data bytes} \]

- **Cache size:**
 - **set**
 - **line**
 - **valid bit**
 - **B = 2^b bytes per cache block (the data)**
Cache Read

- \(E = 2^e \) lines per set
- \(S = 2^s \) sets

Address of word:
- \(t \) bits
- \(s \) bits
- \(b \) bits

Example: Direct Mapped Cache (\(E = 1 \))

Direct mapped: One line per set
Assume: cache block size 8 bytes
Example: Direct Mapped Cache (E = 1)

Direct mapped: One line per set
Assume: cache block size 8 bytes

![Diagram of Direct Mapped Cache](image)

Address of int:
- **t bits**: 0...100
- **valid?**: + match: assume yes = hit

Block Offset

No match: old line is evicted and replaced
Direct-Mapped Cache Simulation

M=16 byte addresses, B=2 bytes/block, S=4 sets, E=1 Blocks/set

Address trace (reads, one byte per read):

- 0 [0000_2], miss
- 1 [0001_2], hit
- 7 [0111_2], miss
- 8 [1000_2], miss
- 0 [0000_2] miss

<table>
<thead>
<tr>
<th>v</th>
<th>Tag</th>
<th>Block</th>
</tr>
</thead>
<tbody>
<tr>
<td>Set 0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Set 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Set 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Set 3</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

A Higher Level Example

```c
int sum_array_rows(double a[16][16])
{
    int i, j;
    double sum = 0;
    for (i = 0; i < 16; i++)
        for (j = 0; j < 16; j++)
            sum += a[i][j];
    return sum;
}
```

```c
int sum_array_cols(double a[16][16])
{
    int i, j;
    double sum = 0;
    for (j = 0; j < 16; j++)
        for (i = 0; i < 16; i++)
            sum += a[i][j];
    return sum;
}
```

Ignore the variables sum, i, j

assume: cold (empty) cache, a[0][0] goes here

32 B = 4 doubles
E-way Set Associative Cache (Here: E = 2)

E = 2: Two lines per set
Assume: cache block size 8 bytes

Address of short int:
\[t \text{ bits} \quad 0...01 \quad 100 \]

compare both
valid? + match: yes = hit

block offset

E-way Set Associative Cache (Here: E = 2)

E = 2: Two lines per set
Assume: cache block size 8 bytes

Address of short int:

<table>
<thead>
<tr>
<th>t bits</th>
<th>0...01</th>
<th>100</th>
</tr>
</thead>
</table>

valid? + match: yes = hit

short int (2 Bytes) is here

No match:
- One line in set is selected for eviction and replacement
- Replacement policies: random, least recently used (LRU), ...

2-Way Set Associative Cache Simulation

M=16 byte addresses, B=2 bytes/block,
S=2 sets, E=2 blocks/set

Address trace (reads, one byte per read):

<table>
<thead>
<tr>
<th>0</th>
<th>[0000],</th>
<th>miss</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>[0001],</td>
<td>hit</td>
</tr>
<tr>
<td>7</td>
<td>[0111],</td>
<td>miss</td>
</tr>
<tr>
<td>8</td>
<td>[1000],</td>
<td>miss</td>
</tr>
<tr>
<td>0</td>
<td>[0000],</td>
<td>hit</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>v</th>
<th>Tag</th>
<th>Block</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>00</td>
<td>M[0-1]</td>
</tr>
<tr>
<td>1</td>
<td>10</td>
<td>M[8-9]</td>
</tr>
</tbody>
</table>

Set 0

<table>
<thead>
<tr>
<th>1</th>
<th>01</th>
<th>M[6-7]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Set 1
A Higher Level Example

```c
int sum_array_rows(double a[16][16])
{
    int i, j;
    double sum = 0;
    for (i = 0; i < 16; i++)
        for (j = 0; j < 16; j++)
            sum += a[i][j];
    return sum;
}
```

ignore the variables `sum`, `i`, `j`
assume: cold (empty) cache, `a[0][0]` goes here

32 B = 4 doubles

What about writes?

- Multiple copies of data exist:
 - L1, L2, Main Memory, Disk

- What to do on a write-hit?
 - Write-through (write immediately to memory)
 - Write-back (defer write to memory until replacement of line)
 - Need a dirty bit (line different from memory or not)

- What to do on a write-miss?
 - Write-allocate (load into cache, update line in cache)
 - Good if more writes to the location follow
 - No-write-allocate (writes immediately to memory)

- Typical
 - Write-through + No-write-allocate
 - Write-back + Write-allocate
Intel Core i7 Cache Hierarchy

Processor package

Core 0

- Regs
- L1 d-cache
- L1 i-cache
- L2 unified cache
- L3 unified cache (shared by all cores)

Core 3

- Regs
- L1 d-cache
- L1 i-cache
- L2 unified cache

L1 i-cache and d-cache:
- 32 KB, 8-way,
 - Access: 4 cycles

L2 unified cache:
- 256 KB, 8-way,
 - Access: 11 cycles

L3 unified cache:
- 8 MB, 16-way,
 - Access: 30-40 cycles

Block size: 64 bytes for all caches.

Cache Performance Metrics

- **Miss Rate**
 - Fraction of memory references not found in cache (misses / accesses)
 - $= 1 – \text{hit rate}$
 - Typical numbers (in percentages):
 - 3-10% for L1
 - can be quite small (e.g., < 1%) for L2, depending on size, etc.

- **Hit Time**
 - Time to deliver a line in the cache to the processor
 - includes time to determine whether the line is in the cache
 - Typical numbers:
 - 1-2 clock cycle for L1
 - 5-20 clock cycles for L2

- **Miss Penalty**
 - Additional time required because of a miss
 - typically 50-200 cycles for main memory (Trend: increasing!)
Lets think about those numbers

- **Huge difference between a hit and a miss**
 - Could be 100x, if just L1 and main memory

- **Would you believe 99% hits is twice as good as 97%?**
 - Consider:
 - cache hit time of 1 cycle
 - miss penalty of 100 cycles
 - Average access time:
 - 97% hits: 1 cycle + 0.03 * 100 cycles = 4 cycles
 - 99% hits: 1 cycle + 0.01 * 100 cycles = 2 cycles

- **This is why “miss rate” is used instead of “hit rate”**

Writing Cache Friendly Code

- **Make the common case go fast**
 - Focus on the inner loops of the core functions

- **Minimize the misses in the inner loops**
 - Repeated references to variables are good (*temporal locality*)
 - Stride-1 reference patterns are good (*spatial locality*)

Key idea: Our qualitative notion of locality is quantified through our understanding of cache memories.
Today

- Cache organization and operation
- Performance impact of caches
 - The memory mountain
 - Rearranging loops to improve spatial locality
 - Using blocking to improve temporal locality

The Memory Mountain

- Read throughput (read bandwidth)
 - Number of bytes read from memory per second (MB/s)

- Memory mountain: Measured read throughput as a function of spatial and temporal locality.
 - Compact way to characterize memory system performance.
Memory Mountain Test Function

```c
/* The test function */
void test(int elems, int stride) {
    int i, result = 0;
    volatile int sink;
    for (i = 0; i < elems; i += stride)
        result += data[i];
    sink = result; /* So compiler doesn't optimize away the loop */
}

/* Run test(elems, stride) and return read throughput (MB/s) */
double run(int size, int stride, double Mhz) {
    double cycles;
    int elems = size / sizeof(int);
    test(elems, stride); /* warm up the cache */
    cycles = fcyc2(test, elems, stride, 0); /* call test(elems, stride) */
    return (size / stride) / (cycles / Mhz); /* convert cycles to MB/s */
}
```

The Memory Mountain

![Graph showing read throughput (MB/s) vs. working set size (bytes) and stride (x8 bytes). The graph illustrates the impact of the working set size and stride on read throughput for different cache configurations.](image)
The Memory Mountain

Intel Core i7
32 KB L1 i-cache
32 KB L1 d-cache
256 KB unified L2 cache
8M unified L3 cache
All caches on-chip

Slopes of spatial locality
Ridges of temporal locality
Today

- Cache organization and operation
- Performance impact of caches
 - The memory mountain
 - Rearranging loops to improve spatial locality
 - Using blocking to improve temporal locality

Miss Rate Analysis for Matrix Multiply

- Assume:
 - Line size = 32B (big enough for four 64-bit words)
 - Matrix dimension (N) is very large
 - Approximate 1/N as 0.0
 - Cache is not even big enough to hold multiple rows

- Analysis Method:
 - Look at access pattern of inner loop
Matrix Multiplication Example

Description:
- Multiply $N \times N$ matrices
- $O(N^3)$ total operations
- N reads per source element
- N values summed per destination
 - but may be able to hold in register

```c
/* ijk */
for (i=0; i<n; i++)
  for (j=0; j<n; j++) {
    sum = 0.0;
    for (k=0; k<n; k++)
      sum += a[i][k] * b[k][j];
    c[i][j] = sum;
  }
```

Layout of C Arrays in Memory (review)

- **C arrays allocated in row-major order**
 - each row in contiguous memory locations
- **Stepping through columns in one row:**
 - for (i = 0; i < N; i++)
 - sum += a[0][i];
 - accesses successive elements
 - if block size (B) > 4 bytes, exploit spatial locality
 - compulsory miss rate = 4 bytes / B
- **Stepping through rows in one column:**
 - for (i = 0; i < n; i++)
 - sum += a[i][0];
 - accesses distant elements
 - no spatial locality!
 - compulsory miss rate = 1 (i.e. 100%)
Matrix Multiplication (ijk)

```c
/* ijk */
for (i=0; i<n; i++) {
    for (j=0; j<n; j++) {
        sum = 0.0;
        for (k=0; k<n; k++)
            sum += a[i][k] * b[k][j];
        c[i][j] = sum;
    }
}
```

Misses per inner loop iteration:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.25</td>
<td>1.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Matrix Multiplication (jik)

```c
/* jik */
for (j=0; j<n; j++) {
    for (i=0; i<n; i++) {
        sum = 0.0;
        for (k=0; k<n; k++)
            sum += a[i][k] * b[k][j];
        c[i][j] = sum;
    }
}
```

Misses per inner loop iteration:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.25</td>
<td>1.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>
Matrix Multiplication (kij)

```c
/* kij */
for (k=0; k<n; k++) {
  for (i=0; i<n; i++) {
    r = a[i][k];
    for (j=0; j<n; j++)
      c[i][j] += r * b[k][j];
  }
}
```

Inner loop:
- `(i,k)`
- `(k,*)`
- `(i,*)`

Misses per inner loop iteration:
- A: 0.0
- B: 0.25
- C: 0.25

Matrix Multiplication (ikj)

```c
/* ikj */
for (i=0; i<n; i++) {
  for (k=0; k<n; k++) {
    r = a[i][k];
    for (j=0; j<n; j++)
      c[i][j] += r * b[k][j];
  }
}
```

Inner loop:
- `(i,k)`
- `(k,*)`
- `(i,*)`

Misses per inner loop iteration:
- A: 0.0
- B: 0.25
- C: 0.25
Matrix Multiplication (jki)

```c
/* jki */
for (j=0; j<n; j++) {
    for (k=0; k<n; k++) {
        r = b[k][j];
        for (i=0; i<n; i++)
            c[i][j] += a[i][k] * r;
    }
}
```

Inner loop:
- *(,k)*
- *(k,j)*
- *(,j)*

Misses per inner loop iteration:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>0.0</td>
<td>1.0</td>
<td></td>
</tr>
</tbody>
</table>

Matrix Multiplication (kji)

```c
/* kji */
for (k=0; k<n; k++) {
    for (j=0; j<n; j++) {
        r = b[k][j];
        for (i=0; i<n; i++)
            c[i][j] += a[i][k] * r;
    }
}
```

Inner loop:
- *(,k)*
- *(k,j)*
- *(,j)*

Misses per inner loop iteration:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>0.0</td>
<td>1.0</td>
<td></td>
</tr>
</tbody>
</table>
Summary of Matrix Multiplication

ijk (\(jik\)):
• 2 loads, 0 stores
• misses/iter = 1.25

kij (\(ikj\)):
• 2 loads, 1 store
• misses/iter = 0.5

jki (\(kji\)):
• 2 loads, 1 store
• misses/iter = 2.0

```
for (i=0; i<n; i++) {
    for (j=0; j<n; j++) {
        sum = 0.0;
        for (k=0; k<n; k++)
            sum += a[i][k] * b[k][j];
        c[i][j] = sum;
    }
}
```

```
for (k=0; k<n; k++) {
    for (i=0; i<n; i++) {
        r = a[i][k];
        for (j=0; j<n; j++)
            c[i][j] += r * b[k][j];
    }
}
```

```
for (j=0; j<n; j++) {
    for (k=0; k<n; k++) {
        r = b[k][j];
        for (i=0; i<n; i++)
            c[i][j] += a[i][k] * r;
    }
}
```
Today

- Cache organization and operation
- Performance impact of caches
 - The memory mountain
 - Rearranging loops to improve spatial locality
 - Using blocking to improve temporal locality

Example: Matrix Multiplication

```c
// Multiply n x n matrices a and b */
void mmm(double *a, double *b, double *c, int n) {
    int i, j, k;
    for (i = 0; i < n; i++)
        for (j = 0; j < n; j++)
            for (k = 0; k < n; k++)
                c[i*n+j] += a[i*n + k]*b[k*n + j];
}
```
Cache Miss Analysis

Assume:
- Matrix elements are doubles
- Cache block = 8 doubles
- Cache size $C \ll n$ (much smaller than n)

First iteration:
- $\frac{n}{8} + n = \frac{9n}{8}$ misses
- Afterwards in cache: (schematic)

Second iteration:
- Again: $\frac{n}{8} + n = \frac{9n}{8}$ misses

Total misses:
- $\frac{9n}{8} \cdot n^2 = \left(\frac{9}{8}\right) \cdot n^3$
Blocked Matrix Multiplication

```c

c = (double *) calloc(sizeof(double), n*n);

/* Multiply n x n matrices a and b */
void mmm(double *a, double *b, double *c, int n) {
    int i, j, k;
    for (i = 0; i < n; i+=B)
        for (j = 0; j < n; j+=B)
            for (k = 0; k < n; k+=B)
                /* B x B mini matrix multiplications */
                for (i1 = i; i1 < i+B; i++)
                    for (j1 = j; j1 < j+B; j++)
                        for (k1 = k; k1 < k+B; k++)
                            c[i1*n+j1] += a[i1*n + k1]*b[k1*n + j1];
}
```

Cache Miss Analysis

- **Assume:**
 - Cache block = 8 doubles
 - Cache size C << n (much smaller than n)
 - Three blocks fit into cache: 3B^2 < C

- **First (block) iteration:**
 - B^2/8 misses for each block
 - 2n/B * B^2/8 = nB/4 (omitting matrix c)
 - Afterwards in cache (schematic)
Cache Miss Analysis

- **Assume:**
 - Cache block = 8 doubles
 - Cache size C << n (much smaller than n)
 - Three blocks fit into cache: $3B^2 < C$

- **Second (block) iteration:**
 - Same as first iteration
 - $2n/B * B^2/8 = nB/4$

- **Total misses:**
 - $nB/4 * (n/B)^2 = n^3/(4B)$

Summary

- **No blocking:** $(9/8) * n^3$
- **Blocking:** $1/(4B) * n^3$

- **Suggest largest possible block size B, but limit $3B^2 < C$!**

- **Reason for dramatic difference:**
 - Matrix multiplication has inherent temporal locality:
 - Input data: $3n^2$, computation $2n^3$
 - Every array elements used $O(n)$ times!
 - But program has to be written properly
Concluding Observations

- **Programmer can optimize for cache performance**
 - How data structures are organized
 - How data are accessed
 - Nested loop structure
 - Blocking is a general technique

- **All systems favor “cache friendly code”**
 - Getting absolute optimum performance is very platform specific
 - Cache sizes, line sizes, associativities, etc.
 - Can get most of the advantage with generic code
 - Keep working set reasonably small (temporal locality)
 - Use small strides (spatial locality)