CS 280: Network Layer:

Broadcast and Multicast Routing

John Magee
21 November 2016

Most slides adapted from Kurose and Ross, Computer Networking 6/e
Source material copyright 1996-2012
J.F Kurose and K.W. Ross
Broadcast routing

- deliver packets from source to all other nodes
- source duplication is inefficient:
 - source duplication: how does source determine recipient addresses?
In-network duplication

- **flooding**: when node receives broadcast packet, sends copy to all neighbors
 - problems: cycles & broadcast storm

- **controlled flooding**: node only broadcasts pkt if it hasn’t broadcast same packet before
 - node keeps track of packet ids already broadcasted
 - or reverse path forwarding (RPF): only forward packet if it arrived on shortest path between node and source

- **spanning tree**: no redundant packets received by any node
Spanning tree

- first construct a spanning tree
- nodes then forward/make copies only along spanning tree

(a) broadcast initiated at A
(b) broadcast initiated at D
Spanning tree: creation

- center node
- each node sends unicast join message to center node
 - message forwarded until it arrives at a node already belonging to spanning tree

(a) stepwise construction of spanning tree (center: E)

(b) constructed spanning tree
Multicast routing: problem statement

goal: find a tree (or trees) connecting routers having local mcast group members

- **tree:** not all paths between routers used
- **shared-tree:** same tree used by all group members
- **source-based:** different tree from each sender to rcvrs

legend
- group member
- not group member
- router with a group member
- router without group member

shared tree

source-based trees
Approaches for building mcast trees

approaches:

- **source-based tree**: one tree per source
 - shortest path trees
 - reverse path forwarding

- **group-shared tree**: group uses one tree
 - minimal spanning (Steiner)
 - center-based trees

...we first look at basic approaches, then specific protocols adopting these approaches
Shortest path tree

- mcast forwarding tree: tree of shortest path routes from source to all receivers
 - Dijkstra’s algorithm

![Diagram of network with labeled routers and links](image)

LEGEND
- router with attached group member
- router with no attached group member
- link used for forwarding, i indicates order link added by algorithm

s: source
Reverse path forwarding

- rely on router’s knowledge of unicast shortest path from it to sender
- each router has simple forwarding behavior:

```plaintext
if (mcast datagram received on incoming link on shortest path back to center)
    then flood datagram onto all outgoing links
else ignore datagram
```
Reverse path forwarding: example

- result is a source-specific reverse SPT
 - may be a bad choice with asymmetric links
Reverse path forwarding: pruning

- forwarding tree contains subtrees with no mcast group members
 - no need to forward datagrams down subtree
 - “prune” msgs sent upstream by router with no downstream group members
Shared-tree: steiner tree

- **steiner tree**: minimum cost tree connecting all routers with attached group members
- problem is NP-complete
- excellent heuristics exists
- not used in practice:
 - computational complexity
 - information about entire network needed
 - monolithic: rerun whenever a router needs to join/leave
Center-based trees

- single delivery tree shared by all
- one router identified as “center” of tree
- to join:
 - edge router sends unicast join-msg addressed to center router
 - join-msg “processed” by intermediate routers and forwarded towards center
 - join-msg either hits existing tree branch for this center, or arrives at center
 - path taken by join-msg becomes new branch of tree for this router
Center-based trees: example

suppose R6 chosen as center:

LEGEND
- router with attached group member
- router with no attached group member
- path order in which join messages generated
Internet Multicasting Routing: DVMRP

- **DVMRP**: distance vector multicast routing protocol, RFC1075
- **flood and prune**: reverse path forwarding, source-based tree
 - RPF tree based on DVMRP’s own routing tables constructed by communicating DVMRP routers
 - no assumptions about underlying unicast
 - initial datagram to mcast group flooded everywhere via RPF
 - routers not wanting group: send upstream prune msgs
DVMRP: continued…

- **soft state:** DVMRP router periodically (1 min.) “forgets” branches are pruned:
 - mcast data again flows down unpruned branch
 - downstream router: reprune or else continue to receive data

- routers can quickly regraft to tree
 - following IGMP join at leaf

- odds and ends
 - commonly implemented in commercial router
Tunneling

Q: how to connect “islands” of multicast routers in a “sea” of unicast routers?

- mcast datagram encapsulated inside “normal” (non-multicast-addressed) datagram
- normal IP datagram sent thru “tunnel” via regular IP unicast to receiving mcast router (recall IPv6 inside IPv4 tunneling)
- receiving mcast router unencapsulates to get mcast datagram
PIM: Protocol Independent Multicast

- not dependent on any specific underlying unicast routing algorithm (works with all)

- two different multicast distribution scenarios:

 dense:
 - group members densely packed, in “close” proximity.
 - bandwidth more plentiful

 sparse:
 - # networks with group members small wrt # interconnected networks
 - group members “widely dispersed”
 - bandwidth not plentiful
Consequences of sparse-dense dichotomy:

dense
- group membership by routers *assumed* until routers explicitly prune
- *data-driven* construction on mcast tree (e.g., RPF)
- bandwidth and non-group-router processing *profligate*

sparse:
- no membership until routers explicitly join
- *receiver-driven* construction of mcast tree (e.g., center-based)
- bandwidth and non-group-router processing *conservative*
PIM- dense mode

flood-and-prune RPF: similar to DVMRP but…

- underlying unicast protocol provides RPF info for incoming datagram
- less complicated (less efficient) downstream flood than DVMRP reduces reliance on underlying routing algorithm
- has protocol mechanism for router to detect it is a leaf-node router
PIM - sparse mode

- center-based approach
- router sends *join* msg to rendezvous point (RP)
 - intermediate routers update state and forward *join*
- after joining via RP, router can switch to source-specific tree
 - increased performance: less concentration, shorter paths
PIM - sparse mode

sender(s):

- unicast data to RP, which distributes down RP-rooted tree
- RP can extend mcast tree upstream to source
- RP can send *stop* msg if no attached receivers
 - “no one is listening!”