Objectives

- Understand the algebraic specification of abstract data types
- Be familiar with abstract data type mechanisms and modules
- Understand separate compilation in C, C++, namespaces, and Java packages
- Be familiar with Ada packages
- Be familiar with modules in ML
Objectives (cont’d.)

• Learn about modules in earlier languages
• Understand problems with abstract data type mechanisms
• Be familiar with the mathematics of abstract data types

Introduction

• Data type: a set of values, along with certain operations on those values
• Two kinds of data types: predefined and user-defined
• Predefined data types:
 – Insulate the user from the implementation, which is machine dependent
 – Manipulated by a set of predefined operations
 – Use is completely specified by predetermined semantics
Introduction (cont’d.)

• User-defined data types:
 – Built from data structures using language’s built-in data types and type constructors
 – Internal organization is visible to the user
 – No predefined operations
• Would be desirable to have a mechanism for constructing data types with as many characteristics of a built-in type as possible
• Abstract data type (or ADT): a data type for constructing user-defined data types

Introduction (cont’d.)

• Important design goals for data types include modifiability, reusability, and security
• Encapsulation:
 – Collection of all definitions related to a data type in one location
 – Restriction on the use of the type to the operations defined at that location
• Information hiding: separation and suppression of implementation details from the data type’s definition
Introduction (cont’d.)

• There is sometimes confusion between a **mechanism** for constructing types and the **mathematical concept** of a type
• Mathematical models are often given in terms of an **algebraic specification**
• **Object-oriented programming** emphasizes the concept of entities to control their own use during execution
• Abstract data types do not provide the level of active control that represents true object-oriented programming

Introduction (cont’d.)

• The notion of an abstract data type is independent of the language paradigm used to implement it
• **Module**: a collection of services that may or may not include data type(s)
The Algebraic Specification of Abstract Data Types

• **Complex** data type: an abstract data type which is not a built-in type in most languages
 - Used to represent a complex number of the form $x = iy$ where i represents the complex number $\sqrt{-1}$
 - Must be able to create a complex number from a real and imaginary part, plus functions to extract the real and imaginary parts

• **Syntactic specification**: name of the type and names of the operations, including a specification of their parameters and returned values
 - Also called the **signature** of the type

The Algebraic Specification of Abstract Data Types (cont’d.)

• Function notation is used to specify the operations of the data type $f:X \rightarrow Y$
• Signature for complex data type:

```plaintext
import real

operations:
  +: complex × complex → complex
  -: complex × complex → complex
  *: complex × complex → complex
  /: complex × complex → complex
  =: complex → complex
  makecomplex: real × real → complex
  realpart: complex → real
  imaginarypart: complex → real
```

Programming Languages, Third Edition
The Algebraic Specification of Abstract Data Types (cont’d.)

• This specification lacks any notion of semantics, or the properties that the operations must actually possess
• In mathematics, semantic properties of functions are often described by equations or axioms
 – Examples of axioms: associativity, commutative, and distributive laws
• Axioms can be used to define semantic properties of complex numbers, or the properties can be derived from those of the real data type

Example: complex addition can be based on real addition

\[
\text{realpart}(x + y) = \text{realpart}(x) + \text{realpart}(y) \\
\text{imaginarypart}(x + y) = \text{imaginarypart}(x) + \text{imaginarypart}(y)
\]

– This allows us to prove arithmetic properties of complex numbers using the corresponding properties of reals

• A complete algebraic specification of type complex combines signature, variables, and equational axioms
 – Called the algebraic specification
The Algebraic Specification of Abstract Data Types (cont’d.)

- The equational semantics give a clear indication of implementation behavior
- Finding an appropriate set of equations, however, can be difficult
- Note that the **arrow** in the syntactic specification separates a function’s domain and range, while **equality** is of values returned by functions
- A specification can be **parameterized** with an unspecified data type
The Algebraic Specification of Abstract Data Types (cont’d.)

```plaintext
type queue(element) imports boolean
operations:
  createq: queue
  enqueue: queue \times element \rightarrow queue
  dequeue: queue \rightarrow queue
  frontq: queue \rightarrow element
  emptyq: queue \rightarrow boolean
variables: q: queue; x: element
axioms:
  emptyq(createq) = true
  emptyq(enqueue(q,x)) = false
  frontq(createq) = error
  frontq(enqueue(q,x)) = if emptyq(q) then x else frontq(q)
  dequeue(createq) = error
  dequeue(enqueue(q,x)) = if emptyq(q) then q else enqueue(dequeue(q),x)
```

• **createq**: a constant
 – Could be viewed as a function of no parameters that always returns the same value – that of a new queue that has been initialized to empty

• **Error axioms**: axioms that specify error values
 – Provide limitations on the operations
 – Example: `frontq(createq) = error`

• Note that the dequeue operation does not return the front element; it simply throws it away
The Algebraic Specification of Abstract Data Types (cont’d.)

- Equations specifying the semantics of the operations can be used as a specification of the properties of an implementation
- There is no mention of memory or of assignment
 - These specifications are in purely functional form
- In practice, abstract data type implementations often replace the functional behavior with an equivalent imperative one
- Finding an appropriate axiom set for an algebraic specification can be difficult

The Algebraic Specification of Abstract Data Types (cont’d.)

- Can make some judgments about the kind and number of axioms needed by looking at the syntax of the operations
- **Constructor**: an operation that creates a new object of the data type
- **Inspector**: an operation that retrieves previously constructed values
 - **Predicates**: return Boolean values
 - **Selectors**: return non-Boolean values
- In general, we need one axiom for each combination of an inspector with a constructor
The Algebraic Specification of Abstract Data Types (cont’d.)

- Example:
 - The queue’s axiom combinations are:
 - `emptyq(createq)`
 - `emptyq(enqueue(q,x))`
 - `frontq(createq)`
 - `frontq(enqueue(q,x))`
 - `dequeue(createq)`
 - `dequeue(enqueue(q,x))`
 - Indicates that six rules are needed

Abstract Data Type Mechanisms

- A mechanism for expressing abstract data types must have a way of separating the signature of the ADT from its implementation
 - Must guarantee that any code outside the ADT definition cannot use details of the implementation and must operate on a value of the defined type only through the provided operations
- ML has a special ADT mechanism called `abstype`
Abstract Data Type Mechanisms (cont’d.)

(1) abstype 'element Queue = Q of 'element list
(2) with
(3) val createq = Q [];
(4) fun enqueue (Q lis, elem) = Q (lis @ [elem]);
(5) fun dequeue (Q lis) = Q (tl lis);
(6) fun frontq (Q lis) = hd lis;
(7) fun emptyq (Q []) = true | emptyq (Q (h::t)) = false;
(8) end;

Figure 11.1 A queue ADT as an ML abstype, implemented as an ordinary ML list

Abstract Data Type Mechanisms (cont’d.)

• ML translator responds with a description of the signature of the type:

```ml
type 'a Queue
val createq = - : 'a Queue
val enqueue = fn : 'a Queue * 'a -> 'a Queue
val dequeue = fn : 'a Queue -> 'a Queue
val frontend = fn : 'a Queue -> 'a
val emptyq = fn : 'a Queue -> bool
```

• Since ML has parametric polymorphism, the `Queue` type can be parameterized by the type of the element to be stored in the queue.
Abstract Data Type Mechanisms (cont’d.)

(1) abstype Complex = C of real * real
(2) with
(3) fun makecomplex (x,y) = C (x,y);
(4) fun realpart (C (r,i)) = r;
(5) fun imaginarypart (C (r,i)) = i;
(6) fun +: (C (r1,i1), C (r2,i2)) = C (r1+r2, i1+i2);
(7) infix 6 +: ;
(8) (* other operations *)
(9) end;

Figure 11.2 A complex number ADT as an ML abstype

Abstract Data Type Mechanisms (cont’d.)

• ML allows user-defined operators, called **infix functions**
 – Can use special symbols
 – Cannot reuse the standard operator symbols
• Example: we have defined the addition operator on complex number to have the name +: as an infix operator with a precedence level of 6 (same as built-in additive operators)
Abstract Data Type Mechanisms (cont’d.)

• The \texttt{Complex} type can be used as follows:

```plaintext
- val z = makecomplex \(1.0, 2.0\);
val z = - : Complex
- val w = makecomplex \(2.0, -1.0\); (* ~ is negation *)
val w = - : Complex
- val x = z +: w;
val x = - : Complex
- realpart x;
val it = 3.0 : real
- imaginarypart x;
val it = 1.0 : real
```

Modules

• A pure ADT mechanism does not address the entire range of situations where an ADT-like abstraction mechanism is useful in a language.

• It makes sense to encapsulate the definitions and implementations of a set of standard functions that are closely related and hide the implementation details.
 – Such a package is not associated directly with a data type and does not fit the format of an ADT mechanism.
Modules (cont’d.)

• Example: a compiler is a set of separate pieces

```
  Main Module
```

 Scanner Parser Semantic Analyzer Code Generator

Figure 11.3 Parts of a programming language compiler

• **Module**: a program unit with a public interface and a private implementation
• As a provider of services, modules can export any mix of data types, procedures, variables, and constants

Programming Languages, Third Edition 27

Modules (cont’d.)

• Modules assist in the control of **name proliferation**
 – They usually provide additional scope features
• A module exports only names that its interface requires, keeping hidden all others
• Names are **qualified** by the module name to avoid accidental name clashes
 – Typically done by using the dot notation
• A module can document dependencies on other modules by requiring explicit import lists whenever code from other modules is used

Programming Languages, Third Edition 28
Separate Compilation in C and C++

- C does not have any module mechanisms
 - Has separate compilation and name control features that can be used to simulate modules
- Typical organization of a queue data structure in C:
 - Type and function specifications in a header file `queue.h` would include type definitions and function declarations without bodies (called prototypes)
 - This file is used as a specification of the queue ADT by textually including it in client code and implementation code using the C preprocessor `#include` directive

Separate Compilation in C and C++ (cont’d.)

![Figure 11.4](image)

Figure 11.4 Separation of specification, implementation, and client code
Separate Compilation in C and C++ (cont’d.)

• Definition of the Queue data type is hidden in the implementation by defining Queue to be a pointer type
 – Leaves the actual queue representation structure as an incomplete type
 – Eliminates the need to have the entire Queue structure declared in the header file

• The effectiveness of this mechanism depends solely on convention
 – Neither compilers nor linkers enforce any protections or checks for out-of-date source code
C++ Namespaces and Java Packages

• namespace mechanism in C++ provides support for the simulation of modules in C
 – Allows the introduction of a named scope explicitly
 – Helps avoid name clashes among separately compiled libraries

• Three ways to use the namespace:
 – Use the scope resolution operator (::)
 – Write a using declaration for each name from the namespace
 – “Unqualify” all names in the namespace with a single using namespace declaration

Figure 11.8 The queue .h header file in C++ using a namespace
C++ Namespaces and Java Packages (cont’d.)

- Java has a namespace-like mechanism called the **package**:
 - A group of related classes
- Can reference a class in a package by:
 - Qualifying the class name with the dot notation
 - Using an import declaration for the class or the entire **package**
- Java compiler can access any other public Java code that is locatable using the search path
- Compiler will check for out-of-date source files and recompile all dependent files automatically

Ada Packages

- Ada’s module mechanism is the **package**
 - Used to implement modules and parametric polymorphism
- Package is divided into two parts:
 - **Package specification**: the public interface to the package, and corresponds to the signature of an ADT
 - **Package body**
- Package specifications and package bodies represent compilation units in Ada and can be compiled separately
Ada Packages (cont’d.)

- Any declarations in a `private` section are inaccessible to a client
- Type names can be given in the public part of a specification, but the actual type declaration must be given in the private part of the specification
- This violates the two criteria for abstract data type mechanisms:
 - The specification is dependent on the implementation
 - Implementation details are divided between the specification and the implementation
Ada Packages (cont’d.)

• Packages in Ada are automatically namespaces in the C++ sense
• Ada has a use declaration analogous to the using declaration of C++ that dereferences the package name automatically
• **Generic packages**: implement parameterized types

```
(1) generic
(2)   type T is private;
(3)   package Queues is
(4)   type Queue is private;
(5)   function creatq return Queue;
(6)   function enqueue(q:Queue;elem:T) return Queue;
(7)   function frontq(q:Queue) return T;
(8)   function dequeue(q:Queue) return Queue;
(9)   function emptyq(q:Queue) return Boolean;
(10)  private
(11)  type Queuerop;
(12)  type Queue is access Queuerop;
(13)  end Queues;
```

Figure 11.12 A parameterized queue ADT defined as an Ada generic package specification.
Modules in ML

- In addition to the abstract definition, ML has a more general module facility consisting of three mechanisms:
 - **Signature**: an interface definition
 - **Structure**: an implementation of the signature
 - **Functions**: functions from structures to structures, with structure parameters having “types” given by signatures
- Signatures are defined using the `sig` and `end` keywords

```
(1) signature QUEUE =
(2)   sig
(3)   type 'a Queue
(4)   val createq: 'a Queue
(5)   val enqueue: 'a Queue * 'a -> 'a Queue
(6)   val frontq: 'a Queue -> 'a
(7)   val dequeue: 'a Queue -> 'a Queue
(8)   val emptyq: 'a Queue -> bool
(9)   end;
```

Figure 11.15 A `QUEUE` signature for a queue ADT in ML
Modules in ML (cont’d.)

(1) structure Queue1: QUEUE =
(2) struct
(3) datatype 'a Queue = Q of 'a list
(4) val createq = Q [];
(5) fun enqueue (Q lis, elem) = Q (lis @ [elem]);
(6) fun frontq (Q lis) = hd lis;
(7) fun dequeue (Q lis) = Q (tl lis);
(8) fun emptyq (Q []) = true
(9) | emptyq (Q (h::tl)) = false;
(10) end;

Figure 11.16 An ML structure Queue1 implementing the QUEUE signature as an ordinary built-in list with wrapper

Modules in ML (cont’d.)

(1) structure Queue2: QUEUE =
(2) struct
(3) datatype 'a Queue = Createq|
(4) | Enqueue of 'a Queue * 'a ;
(5) val createq = Createq;
(6) fun enqueue (q,elem) = Enqueue (q,elem);
(7) fun frontq (Enqueue(Createq,elem)) = elem
(8) | frontq (Enqueue(q,elem)) = frontq q;
(9) fun dequeue (Enqueue(Createq,elem)) = Createq
(10) | dequeue (Enqueue(q,elem))
(11) = Enqueue(dequeue q, elem);
(12) fun emptyq Createq = true | emptyq _ = false;
(13) end;

Figure 11.17 An ML structure Queue2 implementing the QUEUE signature as a user-defined linked list
Modules in ML (cont’d.)

• ML signatures and structures satisfy most of the requirements for abstract data types
• Main difficulty is that client code must explicitly state the implementation to be used in terms of the module name
 – Code cannot be written to depend only on the signature, with the actual implementation structure to be supplied externally to the code
 – This is because ML has no explicit or implicit separate compilation or code aggregation mechanism

Modules in Earlier Languages

• Historically, modules and abstract data type mechanisms began with Simula67
• Languages that contributed significantly to module mechanisms in Ada and ML include CLU, Euclid, Modula-2, Mesa, and Cedar
Euclid

- In the Euclid programming language, modules are types
- Must declare an actual object of the type to use it
- When module types are used in a declaration, a variable of the module type is created, or \textbf{instantiated}
- Can have two different instantiations of a module simultaneously
- This differs from Ada or ML, where modules are objects instead of types, with a single instantiation of each

```
type ComplexNumbers = module
  exports(Complex, add, subtract, multiply,
          divide, negate, makeComplex,
          realPart, imaginaryPart)
  type Complex = record
    var re, im: real
  end Complex

  procedure add (x,y: Complex, var z: Complex) =
  begin
    z.re := x.re + y.re
    z.im := x.im + y.im
  end add

  procedure makeComplex (x,y: real, var z:Complex) =
  begin
    z.re := x
    z.im := y
  end makeComplex

end ComplexNumbers
```
Euclid (cont’d.)

```
var C1, C2: ComplexNumbers
var x: C1.Complex
var y: C2.Complex

C1.makeComplex(1.0, 0.0, x)
C2.makeComplex(0.0, 1.0, y)

(* x and y cannot be added together *)
```

CLU

- In CLU, modules are defined using the **cluster** mechanism
- The data type is defined directly as a cluster
- When we define a variable, its type is not a cluster but what is given by the **rep** declaration
- A cluster in CLU refers to two different things:
 - The cluster itself
 - Its internal representation type
CLU (cont’d.)

```
Complex = cluster is add, multiply,...,
    makeComplex, realPart, imaginaryPart
rep = struct [re,im: real]
add = proc (x,y: cvt ) returns (cvt)
    return
    (rep$(re: x.re+y.re, im: x.im+y.im})
end add
...
makeComplex = proc (x,y: real) returns (cvt)
    return (rep$(re:x, im:y})
realPart = proc(x: cvt) returns (real)
    return(x.re)
end realPart
end Complex
```

CLU (cont’d.)

- cvt (for convert) converts from the external type (with no explicit structure) to the internal rep type and back again

```
max(2.1,3); // which max?
```
Modula-2

- In Modula-2, the specification and implementation of an abstract data type are separated into a
 \texttt{DEFINITION MODULE} and an \texttt{IMPLEMENTATION MODULE}.

- \texttt{DEFINITION MODULE}: contains only definitions or declarations
 - These are the only declarations that are exported (usable by other modules).

- \texttt{IMPLEMENTATION MODULE}: contains the implementation code.

Modula-2 (cont’d.)

\begin{verbatim}
DEFINITION MODULE ComplexNumbers;

TYPE Complex;

PROCEDURE Add (x,y: Complex): Complex;
PROCEDURE Subtract (x,y: Complex): Complex;
PROCEDURE Multiply (x,y: Complex): Complex;
PROCEDURE Divide (x,y: Complex): Complex;
PROCEDURE Negate (z: Complex): Complex;
PROCEDURE MakeComplex (x,y: REAL): Complex;
PROCEDURE RealPart (z: Complex) : REAL;
PROCEDURE ImaginaryPart (z: Complex) : REAL;

END ComplexNumbers.
\end{verbatim}
Modula-2 (cont’d.)

• A client module uses a data type by importing it and its functions from the data type’s module
• Modula-2 uses the dereferencing FROM clause
 – Imported items must be listed by name in the IMPORT statement
 – No other items (imported or locally declared) may have the same names as those imported

Problems with Abstract Data Type Mechanisms

• Abstract data type mechanisms use separate compilation facilities to meet protection and implementation independence requirements
• ADT mechanism is used as an interface to guarantee consistency of use and implementation
• But ADT mechanisms are used to create types and associate operations to types, while separate compilation facilities are providers of services
 – Services may include variables, constants, or other programming language entities
Problems with Abstract Data Type Mechanisms (cont’d.)

• Thus, compilation units are in one sense more general than ADT mechanisms
• They are less general in that the use of a compilation unit to define a type does not identify the type with the unit
 – Thus, not a true type declaration
• Also, units are static entities that retain their identity only before linking
 – Can result in allocation and initialization problems

Using separate compilation units to implement abstract data types is therefore a compromise in language design
• It is a useful compromise
 – Reduces the implementation question for ADTs to one of consistency checking and linkage
Modules Are Not Types

- In C, Ada, and ML, problems arise because a module must export a type as well as operations
- Would be helpful to define a module to be a type
 - Would prevent the need to arrange to protect the implementation details with an ad hoc mechanism such as incomplete or private declarations
- ML makes this distinction by containing both an abstype and a module mechanism
- Module mechanism is more general, but a type must be exported

Modules Are Not Types (cont’d.)

- abstype is a data type, but its implementation cannot be separated from its specification
 - Access to the details of the implementation is prevented
- Clients of the abstype implicitly depend on the implementation
Modules Are Static Entities

• An attractive possibility for implementing an abstract data type is to simply not reveal a type at all
 – Avoids possibility of clients depending in any way on implementation details
 – Prevents clients from misuse of a type
• Can create a package specification in Ada in which the actual data type is buried in the implementation
 – This is pure imperative programming

Modules Are Static Entities (cont’d.)

• Normally this would imply that only one entity of that data type could be in the client
 – Otherwise, the entire code must be replicated
• This is due to the static nature of most module mechanisms
• In Ada, the generic package mechanism offers a way to obtain several entities of the same type by using multiple instantiations of the same generic package
Modules Are Static Entities (cont’d.)

```plaintext
generic
    type T is private;
package Queues is
    procedure enqueue(elem:T);
    function frontq return T;
    procedure dequeue;
    function emptyq return Boolean;
end Queues;
```

Modules That Export Types Do Not Adequately Control Operations on Variables of Such Types

- In the C and Ada examples given, variables of an abstract type had to be allocated and initialized by calling a procedure in the implementation
 - The exporting module cannot guarantee that the initializing procedure is called before the variable is used
- Also allows copies to be made and deallocations performed outside the control of the module
 - Without the user being aware of the consequences
 - Without the ability to return deallocated memory to available storage
Modules That Export Types Do Not Control Operations (cont’d.)

- In C, \(x := y \) performs assignment by sharing the object pointed to by \(y \)
 - \(x = y \) tests pointer equality, which is not correct when \(x \) and \(y \) are complex numbers
- In Ada, we can use a **limited private type** as a mechanism to control the use of assignment and equality
 - Clients are prevented from using the usual assignment and equality operations
 - Package ensures that equality is performed correctly and that assignment deallocates garbage

```plaintext
package ComplexNumbers is
type Complex is limited private;
-- operations, including assignment and equality ...
function equal(x, y: in Complex) return Boolean;
procedure assign(x: out Complex; y: in Complex);
private
type ComplexRec;
type Complex is access ComplexRec;
end ComplexNumbers;
```
• C++ allows overloading of assignment and equality
• Object-oriented languages use **constructors** to solve the initialization problem
• ML limits the data type in an **abstype** or **struct** specification to types that do not permit the equality operation
 – Type parameters that allow equality testing must be written with a double apostrophe `'a` instead of a single apostrophe `a`

Example:

```haskell
signature QUEUE =
  sig
    eqtype `'a Queue
  val createq: `'a Queue
    ...
  etc.
end;
```
Modules Do Not Always Adequately Represent Their Dependency on Imported Types

- Modules often depend on the existence of certain operations on type parameters
 - May also call functions whose existence is not made explicit in the module specification
- Example: data structures such as binary search tree, priority queue, or ordered list all required an order operation such as the less-than arithmetic operation “<“
- C++ templates mask such dependencies in specifications

Modules Do Not Always Represent Their Dependency (cont’d.)

- Example: in C++ code
 - Template min function specification
    ```cpp
template <typename T>
T min( T x, T y);
```
 - Implementation shows the dependency
    ```cpp
    // C++ code
    template <typename T>
    T min( T x, T y)
    // requires an available < operation on T
    { return x < y ? x : y; 
    }
    ```
• In Ada, can specify this requirement using additional declarations in the generic part of a package declaration:

```ada
generic
   type Element is private;
   with function lessThan (x,y: Element) return Boolean;
package OrderedList is
   ... end OrderedList;
```

• Instantiation must provide the `lessThan` function:

```ada
package IntOrderedList is new
   OrderedList (Integer,"<");
```

• Such a requirement is called **constrained parameterization**

• ML allows structures to be explicitly parameterized by other structures
 – This feature is called a **functor** (a function on structures)

```ocaml
functor OListFUN (structure Order: ORDER):
   ORDERED_LIST =
      struct
         ... end;
```
Modules Do Not Always Represent Their Dependency (cont’d.)

• The functor can be applied to create a new structure:

```plaintext
structure IntOList = OlistFUN(structure Order = IntOrder);
```

• This makes explicit the appropriate dependencies, but at the cost of requiring an extra structure to be defined that encapsulates the required features

```
(1) signature ORDER =
(2)   sig
(3)   type Elem
(4)   val lt: Elem * Elem -> bool
(5)   end;

(6) signature ORDERED_LIST =
(7)   sig
(8)   type Elem
(9)   type OList
(10)  val create: OList
(11)  val insert: OList * Elem -> OList
(12)  val lookup: OList * Elem -> bool
(13)  end;
(14) functor OListFUN (structure Order: ORDER):
(15)   ORDERED_LIST =
(16)   struct
(17)   type Elem = Order.Elem;
(18)   type OList = Order.Elem list;
(19)   val create = [];
(20)   fun insert ([], x) = [x]
(21)       | insert (h::t, x) = if Order.lt(x,h) then x::h::t
(22)           else h::insert (t, x);
(23)   fun lookup ([], x) = false
```

Figure 11.18 The use of a functor in ML to define an ordered list (continues)
Module Definitions Include No Specification of the Semantics of the Provided Operations

- In almost all languages, no specification of the behavior of the available operations of an abstract data type is required
- The Eiffel object-oriented language does allow the specification of semantics
 – Semantic specifications are given by preconditions, postconditions, and invariants
- Preconditions and postconditions establish what must be true before and after the execution of a procedure
Module Definitions Include No Specification of Semantics (cont’d.)

- Invariants establish what must be true about the internal state of the data in an abstract data type
- Example: the enqueue operation in Eiffel:

```eiffel
enqueue (x: element) is
  require not full
  ensure if old empty then front = x
    else front = old front;
    not empty
end; -- enqueue
```

Module Definitions Include No Specification of Semantics (cont’d.)

- `require` section establishes preconditions
- `ensure` section establishes postconditions
- These requirements correspond to the algebraic axioms:

 $$frontq(enqueue(q,x)) = \begin{cases} x & \text{if } emptyq(q) \\ frontq(q) & \text{else} \end{cases}$$

 $$emptyq(enqueue(q,x)) = false$$
The Mathematics of Abstract Data Types

• An abstract data type is said to have **existential type**
 – It asserts the existence of an actual type that meets its requirements
• An actual type is a set with operations of the appropriate form
 – A set and operations that meet the specification are a **model** for the specification
• It is possible for no model to exist, or many models

Potential types are called sorts, and potential sets of operations are called signatures

• A sort is the name of a type not yet associated with any actual set of values
• A signature is the name and type of an operation or set of operations that exists only in theory
• A model is then an actualization of a sort and its signature and is called an algebra
• Algebraic specifications are often written using the sort-signature terminology
The Mathematics of Abstract Data Types (cont’d.)

sort queue(element) **imports** boolean

signature:
- createq: queue
- enqueue: queue × element → queue
- dequeue: queue → queue
- frontq: queue → element
- emptyq: queue → boolean

axioms:
- emptyq(createq) = true
- emptyq(enqueue(q, x)) = false
- frontq(createq) = error
- frontq(enqueue(q, x)) = if emptyq(q) then x else frontq(q)
- dequeue(createq) = error
- dequeue(enqueue(q, x)) = if emptyq(q) then q else enqueue(dequeue(q), x)

The Mathematics of Abstract Data Types (cont’d.)

- We would like to be able to construct a unique algebra for the specification to represent the type.
- Standard method to do this:
 - Construct the **free algebra of terms** for a sort.
 - Form the **quotient algebra** of the equivalence relation generated by the equational axioms.
- Free algebra of terms consists of all legal combinations of operations.
The Mathematics of Abstract Data Types (cont’d.)

• Example: free algebra for sort queue(integer) and signature shown earlier includes:

  ```
  createq
  enqueue (createq, 2)
  enqueue (enqueue(createq, 2), 1)
  dequeue (enqueue (createq, 2))
  dequeue (enqueue(enqueue (createq, 2), -1))
  dequeue (dequeue (enqueue (createq, 3)))
  ```
 etc.

• Note that the axioms for a queue imply that some terms are actually equal:

  ```
  dequeue (enqueue (createq, 2)) = createq
  ```

The Mathematics of Abstract Data Types (cont’d.)

• In the free algebra, no axioms are true
 – To make them true (to construct a type that models the specification), must use axioms to reduce the number of distinct elements in the free algebra

• This can be done by constructing an equivalence relation $==$ from the axioms
 – “$==$“ is an equivalence relation if it is symmetric, transitive, and reflexive:

    ```
    if x == y then y == x  (symmetry)
    if x == y and y == z then x == z  (transitivity)
    x == x  (reflexivity)
    ```
The Mathematics of Abstract Data Types (cont’d.)

• Given an equivalence relation == and a free algebra \(F \), there is a unique well-defined algebra \(F/== \) such that \(x=y \) in \(F/== \) if and only if \(x==y \) in \(F \)
 – The algebra \(F/== \) is called the quotient algebra of \(F \) by ==
 – There is a unique “smallest” equivalence relation making the two sides of every equation equivalent and hence equal in the quotient algebra
• The quotient algebra is usually taken to be the data type defined by an algebraic specification

Programming Languages, Third Edition 85

The Mathematics of Abstract Data Types (cont’d.)

• This algebra has the property that the only terms that are equal are those that are provably equal from the axioms
• This algebra is called the initial algebra represented by the specification
 – Using it results in what are called initial semantics
• In general, axiom systems should be consistent and complete
 – Another desirable property is independence: no axiom is implied by other axioms
The Mathematics of Abstract Data Types (cont’d.)

- Deciding on an appropriate set of axioms is generally a difficult process
- **Final algebra**: an approach that assumes that any two data values that cannot be distinguished by inspector operations must be equal
 - The associated semantics are called **final semantics**
- A final algebra is also essentially unique
- **Principle of extensionality** in mathematics:
 - Two things are equal precisely when all their components are equal