Objectives

- Become familiar with a sample small language for the purpose of semantic specification
- Understand operational semantics
- Understand denotational semantics
- Understand axiomatic semantics
- Become familiar with proofs of program correctness
Introduction

• In previous chapters, we discussed semantics from an informal, or descriptive, point of view
 – Historically, this has been the usual approach
• There is a need for a more mathematical description of the behavior of programs and programming languages, to make the definition of a language so precise that:
 – Programs can be proven correct in a mathematical way
 – Translators can be validated to produce exactly the behavior described in the language definition

Introduction (cont’d.)

• Developing such a mathematical system aids the designer in discovering inconsistencies and ambiguities
• There is no single accepted method for formally defining semantics
• Several methods differ in the formalisms used and the kinds of intended applications
• Formal semantic descriptions are more often supplied after the fact, and only for a portion of a language
Introduction (cont’d.)

• Formal methods have begun to be used as part of the specification of complex software projects, including language translators

• Three principal methods to describe semantics formally:
 – Operational semantics
 – Denotational semantics
 – Axiomatic semantics

Introduction (cont’d.)

• **Operational semantics:**
 – Defines a language by describing its actions in terms of the operators of an actual or hypothetical machine
 – Requires that the operations of the machine used in the description are also precisely defined
 – A mathematical model called a “reduction machine” is often used for this purpose (similar in spirit to the notion of a Turing machine)
Introduction (cont’d.)

• **Denotational semantics:**
 – Uses mathematical functions on programs and program components to specify semantics
 – Programs are translated into functions about which properties can be proved using standard mathematical theory of functions

Introduction (cont’d.)

• **Axiomatic semantics:**
 – Applies mathematical logic to language definition
 – Assertions, or predicates, are used to describe desired outcomes and initial assumptions for program
 – Language constructs are associated with **predicate transforms** to create new assertions out of old ones
 – Transformers can be used to prove that the desired outcome follows from the initial conditions
 – Is a method aimed specifically at correctness proofs
Introduction (cont’d.)

• All these methods are syntax-directed
 – Semantic definitions are based on a context-free grammar or Backus-Naur Form (BNF) rules
• Formal semantics must then define all properties of a language that are not specified by the BNF
 – Includes static properties such as static types and declaration before use
• Formal methods can describe both static and dynamic properties
• We will view semantics as everything not specified by the BNF

Introduction (cont’d.)

• Two properties of a specification are essential:
 – Must be complete: every correct, terminating program must have associated semantics given by the rules
 – Must be consistent: the same program cannot be given two different, conflicting semantics
• Additionally, it is advantageous for the semantics to be minimal, or independent
 – No rule is derivable from the other rules
Introduction (cont’d.)

• Formal specifications written in operational or denotational style have an additional useful property:
 – They can be translated relatively easily into working programs in a language suitable for prototyping, such as Prolog, ML, or Haskell

A Sample Small Language

• The basic sample language to be used is a version of the integer expression language used in Ch. 6
• BNF rules for this language:

```
expr → expr '+' term | expr '-' term | term
term → term '*' factor | factor
factor → '(' expr ')' | number
number → number digit | digit
digit → '0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9'
```

Figure 12.1 Basic sample language
A Sample Small Language (cont’d.)

• This results in simple semantics:
 – The value of an expression is a complete representation of its meaning: $2 + 3 \times 4$ means 14
• Complexity will now be added to this language in stages
• In the first stage, we add variables, statements, and assignments
 – A program is a list of statements separated by semicolons
 – A statement is an assignment of an expression to an identifier

A Sample Small Language (cont’d.)

```
factor → '(' expr ')' | number | identifier
program → stmt-list
stmt-list → stmt ';' stmt-list | stmt
stmt → identifier ' := ' expr
identifier → identifier letter | letter
letter → 'a' | 'b' | 'c' | ... | 'z'
```

Figure 12.2 First extension of the sample language
A Sample Small Language (cont’d.)

• Semantics are now represented by a set of values corresponding to identifiers whose values have been defined, or bound, by assignments

• Example:

\[
\begin{align*}
a & := 2 + 3; \\
b & := a \times 4; \\
a & := b - 5
\end{align*}
\]

– Results in bindings \(b = 20 \) and \(a = 15 \) when it finishes
– Set of values representing the semantics of the program is \(\{a = 15, \ b = 20\} \)

A Sample Small Language (cont’d.)

• Such a set is essentially a function from identifiers to integer values, with all unassigned identifiers having a value undefined
 – This function is called an environment, denoted by:
 \[
 Env: \text{Identifier} \to \text{Integer} \cup \{\text{undef}\}
 \]

• Note that the \(Env \) function given by this example program can be defined as:

\[
Env(I) = \begin{cases}
15 & \text{if } I = a \\
20 & \text{if } I = b \\
\text{undef} & \text{otherwise}
\end{cases}
\]
A Sample Small Language (cont’d.)

• The operation of looking up the value of an identifier I in an environment Env is $Env(I)$

• Empty environment is denoted by Env_0

 $Env_0(I) = \text{undef}$ for all I

• An environment as defined here incorporates both the symbol table and state functions

• Such environments:
 – Do not allow pointer values
 – Do not include scope information
 – Do not permit aliases

A Sample Small Language (cont’d.)

• For this view of the semantics of a program represented by a resulting final environment:
 – Consistency: we cannot derive two different final environments for the same program
 – Completeness: we must be able to derive a final environment for every correct, terminating program

• We now add if and while control statements
 – Syntax of the if and while statements borrows the Algol68 convention of writing reserved words backward, instead of begin and end blocks
A Sample Small Language (cont’d.)

\[
\begin{align*}
stmt & \rightarrow \text{assign-stmt} \mid \text{if-stmt} \mid \text{while-stmt} \\
\text{assign-stmt} & \rightarrow \text{identifier} \ := \ \text{expr} \\
\text{if-stmt} & \rightarrow \text{‘if’ expr ‘then’ stmt-list ‘else’ stmt-list ‘fi’} \\
\text{while-stmt} & \rightarrow \text{‘while’ expr ‘do’ stmt-list ‘od’}
\end{align*}
\]

Figure 12.3 Second extension of the sample language

A Sample Small Language (cont’d.)

- Meaning of an `if-stmt`:
 - `expr` is evaluated in the current environment
 - If it evaluates to an integer greater than 0, then `stmt-list after then` is executed
 - If not, `stmt-list after the else` is executed
- Meaning of a `while-stmt`:
 - As long as `expr` evaluates to a quantity greater than 0, `stmt-list` is repeatedly executed and `expr` is reevaluated
- Note that these semantics are nonstandard!
A Sample Small Language (cont’d.)

• Example program in this language:

```plaintext
n := 0 - 5;
if n then i := n else i := 0 - n fi;
fact := 1;
while i do
    fact := fact * i;
i := i - 1
od
```

• Semantics are given by the final environment:

\[n = -5, i = 0, \text{fact} = 120 \]

A Sample Small Language (cont’d.)

• Difficult to provide semantics for loop constructs
 – We will not always give a complete solution
• Formal semantic methods often use a simplified version of syntax from that given
• An ambiguous grammar can be used to define semantics because:
 – Parsing step is assumed to have already taken place
 – Semantics are defined only for syntactically correct constructs
• Nonterminal symbols can be replaced by single letters
A Sample Small Language (cont’d.)

- Nonterminal symbols can be replaced by single letters
 - May be thought to represent strings of tokens or nodes in a parse tree
- Such a syntactic specification is sometimes called an **abstract syntax**

Abstract syntax for our sample language:

\[
\begin{align*}
P & \rightarrow L \\
L & \rightarrow L_1 \cdot ; \cdot L_2 \mid S \\
S & \rightarrow I : = \cdot E \mid \cdot \text{'if'} \cdot E \cdot \text{'then'} \cdot L_1 \cdot \text{'else'} \cdot L_2 \cdot \text{'fi'} \\
& \quad \mid \cdot \text{'while'} \cdot E \cdot \text{'do'} \cdot L \cdot \text{'od'} \\
E & \rightarrow E_1 \cdot + \cdot E_2 \mid E_1 \cdot - \cdot E_2 \mid E_1 \cdot \ast \cdot E_2 \mid \cdot (\cdot E_1 \cdot) \cdot) \mid N \\
N & \rightarrow N_1 \cdot D \mid D \\
D & \rightarrow \cdot 0 \cdot \mid \cdot 1 \cdot \mid \ldots \mid \cdot 9 \cdot \\
I & \rightarrow I_1 \cdot A \mid A \\
A & \rightarrow \cdot a \cdot \mid \cdot b \cdot \mid \ldots \mid \cdot z \cdot
\end{align*}
\]

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>Program</td>
</tr>
<tr>
<td>L</td>
<td>Statement-list</td>
</tr>
<tr>
<td>S</td>
<td>Statement</td>
</tr>
<tr>
<td>E</td>
<td>Expression</td>
</tr>
<tr>
<td>N</td>
<td>Number</td>
</tr>
<tr>
<td>D</td>
<td>Digit</td>
</tr>
<tr>
<td>I</td>
<td>Identifier</td>
</tr>
<tr>
<td>A</td>
<td>Letter</td>
</tr>
</tbody>
</table>

Programming Languages, Third Edition
A Sample Small Language (cont’d.)

- To define the semantics of each symbol, we define the semantics of each right-hand side of the abstract syntax rules in terms of the semantics of their parts
 - Thus, syntax-directed semantic definitions are recursive in nature
- Tokens in the grammar are enclosed in quotation marks

Operational Semantics

- Operational semantics specify how an arbitrary program is to be executed on a machine whose operation is completely known
- **Definitional interpreters** or **compilers**: translators for the language written in the machine code of the chosen machine
- Operational semantics can define the behavior of programs in terms of an **abstract machine**

![Diagram](image)
Operational Semantics (cont’d.)

• **Reduction machine**: an abstract machine whose control operates directly on a program to reduce it to its semantic “value”

• Example: reduction of the expression \((3 + 4) \times 5\)

 \[
 (3 + 4) \times 5 \Rightarrow (7) \times 5 \quad \text{— 3 and 4 are added to get 7} \\
 \Rightarrow 7 \times 5 \quad \text{— the parentheses around 7 are dropped} \\
 \Rightarrow 35 \quad \text{— 7 and 5 are multiplied to get 35}
 \]

• To specify the operational semantics, we give **reduction rules** that specify how the control reduces constructs of the language to a value

Logical Inference Rules

• Inference rules in logic are written in the form:

 \[
 \begin{array}{c}
 \text{premise} \\
 \text{conclusion}
 \end{array}
 \]

 – If the premise is true, the conclusion is also true

• Inference rule for the commutative property of addition:

 \[
 \frac{a + b = c}{b + a = c}
 \]

• Inference rules are used to express the basic rules of prepositional and predicate calculus:

 \[
 \frac{a \rightarrow b, b \rightarrow c}{a \rightarrow c}
 \]
Logical Inference Rules (cont’d.)

• **Axioms**: inference rules with no premise
 – They are always true
 – Example:
 \[a + 0 = a \]
 – Axioms can be written as an inference rule with an empty premise:
 \[\frac{a + 0 = a}{a + 0 = a} \]
 – Or without the horizontal line:
 \[a + 0 = a \]

Reduction Rules for Integer Arithmetic Expressions

• **Structured operational semantics**: the notational form for writing reduction rules that we will use

• Semantics rules are based on the abstract syntax for expressions:

 \[
 E \rightarrow E_1 \, \text{‘+’} \, E_2 \mid E_1 \, \text{‘−’} \, E_2 \mid E_1 \, \text{‘*’} \, E_2 \mid \text{‘(’} \, E_1 \, \text{‘)’} \\
 N \rightarrow N_1 \, D \mid D \\
 D \rightarrow \text{‘0’} \mid \text{‘1’} \mid \ldots \mid \text{‘9’}
 \]

• The notation \(E \Rightarrow E_1 \) states that expression \(E \) reduces to expression \(E_1 \) by some reduction rule
Reduction Rules for Expressions

1. Collect all rules for reducing digits to values in this one rule
 - All are axioms
 - `'0' => 0`
 - `'1' => 1`
 - `'2' => 2`
 - `'3' => 3`
 - `'4' => 4`
 - `'5' => 5`
 - `'6' => 6`
 - `'7' => 7`
 - `'8' => 8`
 - `'9' => 9`

Reduction Rules for Expressions (cont’d.)

2. Collect all rules for reducing numbers to values in this one rule
 - All are axioms
 - $V\ '0' \Rightarrow 10 \times V$
 - $V\ '1' \Rightarrow 10 \times V + 1$
 - $V\ '2' \Rightarrow 10 \times V + 2$
 - $V\ '3' \Rightarrow 10 \times V + 3$
 - $V\ '4' \Rightarrow 10 \times V + 4$
 - $V\ '5' \Rightarrow 10 \times V + 5$
 - $V\ '6' \Rightarrow 10 \times V + 6$
 - $V\ '7' \Rightarrow 10 \times V + 7$
 - $V\ '8' \Rightarrow 10 \times V + 8$
 - $V\ '9' \Rightarrow 10 \times V + 9$
Reduction Rules for Expressions (cont’d.)

3. \(V_1 \cdot+\cdot V_2 \Rightarrow V_1 + V_2 \)
4. \(V_1 \cdot-\cdot V_2 \Rightarrow V_1 - V_2 \)
5. \(V_1 \cdot*\cdot V_2 \Rightarrow V_1 \cdot*\cdot V_2 \)
6. \(('V'') \Rightarrow V \)
7. \(E \Rightarrow E_1 \)
 \(E \cdot+\cdot E_2 \Rightarrow E_1 \cdot+\cdot E_2 \)
8. \(E \Rightarrow E_1 \)
 \(E \cdot-\cdot E_2 \Rightarrow E_1 \cdot-\cdot E_2 \)
9. \(E \Rightarrow E_1 \)
 \(E \cdot*\cdot E_2 \Rightarrow E_1 \cdot*\cdot E_2 \)
10. \(E \Rightarrow E_1 \)
 \(V \cdot+\cdot E \Rightarrow V \cdot+\cdot E_1 \)
11. \(E \Rightarrow E_1 \)
 \(E \cdot-\cdot E \Rightarrow E \cdot-\cdot E_1 \)
12. \(E \Rightarrow E_1 \)
 \(V \cdot*\cdot E \Rightarrow V \cdot*\cdot E_1 \)
13. \(E \Rightarrow E_1 \)
 \(('E') \Rightarrow ('E_1') \)
14. \(E \Rightarrow E_1, E_1 \Rightarrow E_2 \)
 \(E \Rightarrow E_2 \)

Reduction Rules for Expressions (cont’d.)

• Rules 1 through 6 are all axioms.
• Rules 1 and 2 express the reduction of digits and numbers to values.
 – Character ‘0’ (a syntactic entity) reduces to the value 0 (a semantic entity).
• Rules 3 to 5 allow an expression consisting of two values and an operator symbol to be reduced to a value by applying the appropriate operation whose symbol appears in the expression.
• Rule 6 says parentheses around an expression can be dropped.
Reduction Rules for Expressions (cont’d.)

- The rest of the reduction rules are inferences that allow the reduction machine to combine separate reductions together to achieve further reductions.
- Rule 14 expresses the general fact that reductions can be performed stepwise (sometimes called the transitivity rule for reductions).

Applying these reduction rules to the expression:

\[2 \times (3 + 4) - 5. \]

First reduce the expression: \(3 + 4 \):

\[
\begin{align*}
3 + 4 & \Rightarrow 3 + 4 \quad \text{(Rules 1 and 7)} \\
& \Rightarrow 7 \quad \text{(Rule 3)}
\end{align*}
\]

Thus, by rule 14, we have \(3 + 4 \Rightarrow 7 \).
Reduction Rules for Expressions (cont’d.)

• Continuing:
 \[('(3 + 4)' \Rightarrow ('7'))\] (Rule 13)
 \[\Rightarrow 7 \] (Rule 6)

• Now reduce the expression \(2 \cdot (3 + 4)\) as follows:
 \[2 \cdot (3 + 4) \Rightarrow 2 \cdot 7 \] (Rules 1 and 9)
 \[\Rightarrow 2 \cdot 7 = 14 \] (Rule 5)

• And finally:
 \[2 \cdot (3 + 4) \Rightarrow 14 - 5 \] (Rules 1 and 8)
 \[\Rightarrow 14 - 5 = 9 \] (Rule 4)

Environments and Assignment

• Abstract syntax for our sample language:

 \[
 \begin{align*}
 P & \rightarrow L \\
 L & \rightarrow L_1 \cdot L_2 \mid S \\
 S & \rightarrow I \ := \ E \mid \text{if } E \text{ then } L_1 \text{ else } L_2 \mid \text{if } E \text{ do } L \text{ od } \mid E_1 \ + \ E_2 \mid E_1 \ - \ E_2 \mid E_1 \ * \ E_2 \mid ('E_1') \mid N \\
 N & \rightarrow N_1 D \mid D \\
 D & \rightarrow '0' \mid '1' \mid \ldots \mid '9' \\
 I & \rightarrow I_1 A \mid A \\
 A & \rightarrow 'a' \mid 'b' \mid \ldots \mid 'z'
 \end{align*}
 \]

 \[P : \text{Program} \]
 \[L : \text{Statement-list} \]
 \[S : \text{Statement} \]
 \[E : \text{Expression} \]
 \[N : \text{Number} \]
 \[D : \text{Digit} \]
 \[I : \text{Identifier} \]
 \[A : \text{Letter} \]
Environments and Assignment (cont’d.)

• We want to extend the operational semantics to include environments and assignments
• Must include the effect of assignments on the storage of the abstract machine
• Our view of storage: an environment that is a function from identifiers to integer values (including the undefined value):

\[Env : \text{Identifier} \rightarrow \text{Integer} \cup \{\text{undef}\} \]

• The notation \(<E | Env> \) indicates that expression \(E \) is evaluated in the presence of environment \(Env \)

Environments and Assignment (cont’d.)

• Now our reduction rules change to include environments
• Example: rule 7 with environments becomes:

\[
\begin{align*}
 <E | Env> & \Rightarrow <E_1 | Env> \\
 <E + E_2 | Env> & \Rightarrow <E_1 + E_2 | Env>
\end{align*}
\]

– This states that if \(E \) reduces to \(E_1 \) in the presence of \(Env \), then \(E + E_2 \) reduces to \(E_1 + E_2 \) in the same environment
Environments and Assignment (cont’d.)

- The one case of evaluation that explicitly involves the environment is when an expression is an identifier I, giving a new rule:

15. \[
\frac{\text{Env}(I) = V}{\langle I \mid \text{Env} \rangle \rightarrow \langle V \mid \text{Env} \rangle}
\]

This states that if the value of identifier I is V in Env, then I reduces to V in the presence of Env.

- Next, we add assignment statements and statement sequences to the reduction rules:

16. \[
\langle I := V \mid \text{Env} \rangle \rightarrow \text{Env} \& \{I = V\}
\]

This states that the assignment of the value V to I in Env reduces to a new environment where I is equal to V.

- Reduction of expressions within assignments uses this rule:

17. \[
\frac{\langle E \mid \text{Env} \rangle \rightarrow \langle E_i \mid \text{Env} \rangle}{\langle I := E \mid \text{Env} \rangle \rightarrow \langle I := E_i \mid \text{Env} \rangle}
\]
Environments and Assignment (cont’d.)

• A statement sequence reduces to an environment formed by accumulating the effect of each assignment, giving this rule:
 18. \[
 \frac{S \mid Env \Rightarrow Env}{S ; L \mid Env \Rightarrow L \mid Env}
 \]

• Finally, a program is a statement sequence with no prior environment, giving this rule:
 19. \[
 L \Rightarrow L \mid Env
 \]
 It reduces to the effect it has on the empty starting environment

Environments and Assignment (cont’d.)

• Rules for reducing identifier expressions are completely analogous to those for reducing numbers
• Sample program to be reduced to an environment:
  ```plaintext
  a := 2 + 3;
  b := a * 4;
  a := b - 5
  ```
• To simplify the reduction, we will suppress the use of quotes to differentiate between syntactic and semantic entities
Environments and Assignment (cont’d.)

- First, by rule 19, we have:
 \[a := 2 + 3; b := a * 4; a := b - 5 \Rightarrow \]
 \[<a := 2 + 3; b := a * 4; a := b - 5 | Env_0> \]

- Also, by rules 3, 17, and 16:
 \[<a := 2 + 3 | Env_0> \Rightarrow \]
 \[<a := 5 | Env_0> \Rightarrow \]
 \[Env_0 & \{a = 5\} = \{a = 5\} \]

- Then by rule 18:
 \[<a := 2 + 3; b := a * 4; a := b - 5 | Env_0> \Rightarrow \]
 \[<b := a * 4; a := b - 5 | \{a = 5\}> \]

Environments and Assignment (cont’d.)

- Similarly, by rules 15, 9, 5, 17, and 16:
 \[<b := a * 4 | \{a = 5\}> \Rightarrow <b := 5 * 4 | \{a = 5\}> \Rightarrow <b := 20 | \{a = 5\}> \Rightarrow \{a = 5\} & \{b = 20\} = \{a = 5, b = 20\} \]

- Then by rule 18:
 \[<b := a * 4; a := b - 5 | \{a = 5\}> \Rightarrow \]
 \[<a := b - 5 | \{a = 5, b = 20\}> \]

- Finally, by a similar application of rules:
 \[<a := b - 5 | \{a = 5, b = 20\}> \Rightarrow \]
 \[<a := 20 - 5 | \{a = 5, b = 20\}> \Rightarrow \]
 \[<a := 15 | \{a = 5, b = 20\}> \Rightarrow \]
 \[\{a = 5, b = 20\} & \{a = 15, b = 20\} \]
Control

• Next we add if and while statements, with this abstract syntax:
 \[S \rightarrow \text{‘if’ } E \text{ ‘then’ } L_1 \text{ ‘else’ } L_2 \text{ ‘fi’} \]
 \| \text{‘while’ } E \text{ ‘do’ } L \text{ ‘od’} \\

• Reduction rules for if statements include:

20. \[\frac{<E \mid Env> \Rightarrow <E_1 \mid Env>}{<\text{‘if’ } E \text{ ‘then’ } L_1 \text{ ‘else’ } L_2 \text{ ‘fi’} \mid Env> \Rightarrow <\text{‘if’ } E_1 \text{ ‘then’ } L_1 \text{ ‘else’ } L_2 \text{ ‘fi’} \mid Env>} \]

Control (cont’d.)

21. \[\frac{V > 0}{<\text{‘if’ } V \text{ ‘then’ } L_1 \text{ ‘else’ } L_2 \text{ ‘fi’} \mid Env> \Rightarrow <L_1 \mid Env>} \]

22. \[\frac{V \leq 0}{<\text{‘if’ } V \text{ ‘then’ } L_1 \text{ ‘else’ } L_2 \text{ ‘fi’} \mid Env> \Rightarrow <L_2 \mid Env>} \]

• Reduction rules for while statements include:

23. \[\frac{<E \mid Env> \Rightarrow <V \mid Env>, V \leq 0}{<\text{‘while’ } E \text{ ‘do’ } L \text{ ‘od’} \mid Env> \Rightarrow Env} \]

24. \[\frac{<E \mid Env> \Rightarrow <V \mid Env>, V > 0}{<\text{‘while’ } E \text{ ‘do’ } L \text{ ‘od’} \mid Env> \Rightarrow <L; \text{‘while’ } E \text{ ‘do’ } L \text{ ‘od’} \mid Env>} \]
Implementing Operational Semantics in a Programming Language

- It is possible to implement operational semantic rules directly as a program to get an **executable specification**
- This is useful for two reasons:
 - Allows us to construct a language interpreter directly from a formal specification
 - Allows us to check the correctness of the specification by testing the resulting interpreter
- A possible Prolog implementation for the reduction rules of our sample language will be used

Implementing Operational Semantics in a Programming Language (cont’d.)

- Example: $3 \times (4+5)$ in Prolog:

  ```prolog
  times(3, plus(4, 5))
  ```

- Example: this program:
  ```
  a := 2+3;
  b := a*4;
  a := b-5
  ```
 - Can be represented in Prolog as:
    ```prolog
    seq(assign(a, plus(2, 3)),
        seq(assign(b, times(a, 4)), assign(a, sub(b, 5))))
    ```

- This is actually a tree representation, and no parentheses are necessary to express grouping
Implementing Operational Semantics in a Programming Language (cont’d.)

• We can write reduction rules (ignoring environment rules for the moment)

• A general reduction rule for expressions:

 \[\text{reduce}(X, Y) :- \ldots \]

 – Where \(X \) is any arithmetic expression (in abstract syntax) and \(Y \) is the result of a single reduction step applied to \(X \)

• Example:

 – Rule 3 can be written as:

 \[
 \text{reduce}(\text{plus}(V1, V2), R) :- \\
 \text{integer}(V1), \text{integer}(V2), !, \text{R is } V1 + V2
 \]

Implementing Operational Semantics in a Programming Language (cont’d.)

• Rule 7 becomes:

 \[
 \text{reduce}(\text{plus}(E, E2), \text{plus}(E1, E2)) :- \text{reduce}(E, E1)
 \]

• Rule 10 becomes:

 \[
 \text{reduce}(\text{plus}(V, E), \text{plus}(V, E1)) :- \\
 \text{integer}(V), !, \text{reduce}(E, E1)
 \]

• Rule 14 presents a problem if written as:

 \[
 \text{reduce}(E, E2) :- \text{reduce}(E, E1), \text{reduce}(E1, E2)
 \]

 – Infinite recursive loops will result

• Instead, write rule 14 as two rules:

 \[
 \text{reduce_all}(V, V) :- \text{integer}(V), !.
 \text{reduce_all}(E, E2) :- \text{reduce}(E, E1), \text{reduce_all}(E1, E2)
 \]
Implementing Operational Semantics in a Programming Language (cont’d.)

- Now extend to environments and control: a pair \(<E|Env>\) can be thought of as a configuration and written in Prolog as \(\text{config}(E, Env)\)

- Rule 15 then becomes:

 \[
 \text{reduce(config}(I, \text{Env}), \text{config}(V, \text{Env})) \leftarrow
 \text{atom}(I), !, \text{lookup}(\text{Env}, I, V)
 \]

 - Where \(\text{atom}(I)\) tests for a variable and \(\text{lookup}\) operation finds values in an environment

- Rule 16 becomes:

 \[
 \text{reduce(config}(\text{assign}(I, V), \text{Env}), \text{Env1}) \leftarrow
 \text{integer}(V), !, \text{update}(\text{Env}, \text{value}(I, V), \text{Env1})
 \]

 - Where \(\text{update}\) inserts the new value \(V\) for \(I\) into \(\text{Env}\), yielding \(\text{Env1}\)

- Any dictionary structure for which \(\text{lookup}\) and \(\text{update}\) can be defined can be used to represent an environment in this code
Denotational Semantics

• Denotational semantics use functions to describe the semantics of a programming language
 – A function associates semantic values to syntactically correct constructs
• Example: a function that maps an integer arithmetic expression to its value:
 \[Val : \text{Expression} \rightarrow \text{Integer} \]
 – **Syntactic domain**: domain of a semantic function
 – **Semantic domain**: range of a semantic function, which is a mathematical structure

Example: \(\text{val}(2 + 3 \times 4) = 14 \)
 – Set of integers is the semantic domain
 – \text{val} maps the syntactic construct \(2 + 3 \times 4 \) to the semantic value 14; it **denotes** the value 14

• A program can be viewed as something that receives input and produces output
• Its semantics can be represented by a function:
 \[P : \text{Program} \rightarrow (\text{Input} \rightarrow \text{Output}) \]
 – Semantic domain is a set of functions from input to output
 – Semantic value is a function
Denotational Semantics (cont’d.)

• Since semantic domains are often functional domains, and values of semantic functions will be functions themselves, we will assume the symbol “→” is right associative and drop the parentheses:
 \[P : \text{Program} \rightarrow \text{Input} \rightarrow \text{Output} \]

• Three parts of a denotational definition of a program:
 – Definition of the **syntactic domains**
 – Definition of the **semantic domains**
 – Definition of the semantic functions themselves (sometimes called **valuation functions**)

Syntactic Domains

• **Syntactic domains:**
 – Are defined in denotational definition using notation similar to abstract syntax
 – Are viewed as sets of syntax trees whose structure is given by grammar rules that recursively define elements of the set

• Example:

 \[D: \text{Digit} \]
 \[N: \text{Number} \]

 \[N \rightarrow N \, D \mid D \]
 \[D \rightarrow '0' \mid '1' \mid \ldots \mid '9' \]
Semantic Domains

• **Semantic domains**: sets in which semantic functions take their values
 – Like syntactic domains but may also have additional mathematical structure, depending on use
• Example: integers have arithmetic operations
• Such domains are **algebras**, which are specified by listing their functions and properties
 – Denotational definition of semantic domains lists the sets and operations but usually omits the properties of the operations

Semantic Domains (cont’d.)

• Domains sometimes need special mathematical structures that are the subject of **domain theory**
 – Term domain is sometimes reserved for an algebra with the structure of a complete partial order
 – This structure is needed to define the semantics of recursive functions and loops
• Example: semantic domain of the integers:

  ```
  Domain V: Integer = {..., -2, -1, 0, 1, 2, ...}
  Operations
  + : Integer × Integer → Integer
  − : Integer × Integer → Integer
  * : Integer × Integer → Integer
  ```
Semantic Functions

- **Semantic function**: specified for each syntactic domain
- Each function is given a different name based on its associated syntactic domain, usually with boldface letters
- Example: value function from the syntactic domain Digit to the integers:
 \[D : \text{Digit} \rightarrow \text{Integer} \]

Semantic Functions (cont’d.)

- Value of a semantic function is specified recursively on the trees of syntactic domains using the structure of grammar rules
- **Semantic equation** corresponding to each grammar rule is given
- Example: grammar rule for digits: \(D \rightarrow '0' | '1' \ldots | '9' \)
 – Gives rise to syntax tree nodes:
 \[
 \begin{array}{c}
 D \\
 D \\
 \ldots \\
 D \\
 '0' \\
 '1' \\
 '9'
 \end{array}
 \]
Semantic Functions (cont’d.)

• Example (cont’d.):
 – Semantic function D is defined by these semantic equations representing the value of each leaf:

 $D(0) = 0, \quad D(1) = 1, \ldots, \quad D(9) = 9$

 – This notation is shortened to the following:

 $D[0] = 0, D[1] = 1, \ldots, D[9] = 9$

 – Double brackets $[\ldots]$ indicate that the argument is a syntactic entity consisting of a syntax tree node with the listed arguments as children.

Programming Languages, Third Edition

Semantic Functions (cont’d.)

• Example: semantic function from numbers to integers: $N : \text{Number} \rightarrow \text{Integer}$
 – Is based on the syntax: $N \rightarrow ND \mid D$
 – And is given by these equations:

 $N[ND] = 10 \ast N[N] + N[D]$
 $N[D] = D[D]$

 – Where $[[ND]]$ refers to the tree node $N \overline{\vdash} ND$

 – And $[[D]]$ refers to the node $N \overline{\vdash} D$

Programming Languages, Third Edition
Denotational Semantics of Integer Arithmetic Expressions

Syntactic Domains

- **E**: Expression
- **N**: Number
- **D**: Digit

\[\begin{align*}
E & \rightarrow E_1 \ '+' \ E_2 \\ & \mid E_1 \ '-' \ E_2 \\ & \mid (\text{'} E \text{'}) \\ N & \rightarrow N D \mid D \\ D & \rightarrow '0' \mid '1' \mid \ldots \mid '9'
\end{align*}\]

Semantic Domains

Domain \(\text{v} = \text{Integer} = \{\ldots, -2, -1, 0, 1, 2, \ldots\}\)

Operations

- **+**: Integer \(\times\) Integer \(\rightarrow\) Integer
- **-**: Integer \(\times\) Integer \(\rightarrow\) Integer
- **\(*\)**: Integer \(\times\) Integer \(\rightarrow\) Integer

Semantic Functions

\[\begin{align*}
E[[E_1 \ '+' \ E_2]] & = E[[E_1]] + E[[E_2]] \\
E[[E_1 \ '-' \ E_2]] & = E[[E_1]] - E[[E_2]] \\
E[[E_1 \ '*' \ E_2]] & = E[[E_1]] \times E[[E_2]] \\
E[['(\text{'} E \text{'})]] & = E[[E]] \\
E[[N]] & = N[[N]] \\
N & \rightarrow \text{Number} \rightarrow \text{Integer}
\end{align*}\]

\[\begin{align*}
N[[N D]] & = 10 \times N[[N]] + N[[D]] \\
N[[D]] & = D[[D]] \\
D[[\text{'0'}]] & = 0, D[[\text{'1'}]] = 1, \ldots, D[[\text{'9'}]] = 9
\end{align*}\]

Denotational Semantics of Integer Arithmetic Expressions (cont’d.)

- Using these equations to obtain the semantic value of an expression, we compute \(E[[2 + 3] \times 4]\) or more precisely, \(E[['(2 \ '+' \ 3') \ '*' \ 4']]\)

\[\begin{align*}
E[['(2 \ '+' \ 3') \ '*' \ 4']] \\
= E[['(2 \ '+' \ 3')]] \times E[['4']] \\
= E[['2' \ '+' \ '3']] \times N[['4']] \\
= (E[['2']] + E[['3']]) \times D[['4']] \\
= (N[['2']] + N[['3']]) \times 4 \\
= D[['2']] + D[['3']]) \times 4 \\
= (2 + 3) \times 4 = 5 \times 4 = 20
\end{align*}\]
Environments and Assignments

• First extension to our sample language adds identifiers, assignment statements, and environments
• Environments are functions from identifiers to integers (or undefined)
• Set of environments becomes a new semantic domain:
 \[\text{Domain } Env: \text{Environment} = \text{Identifier} \to \text{Integer} \cup \{ \text{undef} \} \]

Environments and Assignments (cont’d.)

• In denotational semantics, the value \texttt{undef} is called \textbf{bottom}, from the theory of partial orders, and is denoted by the symbol \(\bot\)
• Semantic domains with this value are called \textbf{lifted domains} and are subscripted with the symbol \(\bot\)
• The initial environment defined previously can now be defined as: \(\text{Env}_0(I) = \bot\) for all identifiers \(I\).
• Semantic value of an expression becomes a function from environments to integers:
 \(E : \text{Expression} \to \text{Environment} \to \text{Integer} \to \bot\)
Environments and Assignments (cont’d.)

• The value of an identifier is its value in the environment provided as a parameter:

\[E[[I]](Env) = Env(I) \]

• For a number, the environment is immaterial:

\[E[[N]](Env) = N[[N]] \]

• For statements and statement lists, the semantic values are functions from environments to environments
 – The “\&” notation is used to add values to functions that we have used in previous sections

Syntactic Domains

\[P \rightarrow \text{Program} \]
\[L \rightarrow \text{Statement-list} \]
\[S \rightarrow \text{Statement} \]
\[E \rightarrow \text{Expression} \]
\[N \rightarrow \text{Number} \]
\[D \rightarrow \text{Digit} \]
\[I \rightarrow \text{Identifier} \]
\[A \rightarrow \text{Letter} \]
\[P \rightarrow L \]
\[L \rightarrow I, \cdot, L, S \]
\[S \rightarrow I := E \]
\[E \rightarrow E_1, +, E_2 \mid E_1, -, E_2 \mid E_1, *, E_2 \]
\[E \rightarrow (E) \mid I \mid N \]
\[N \rightarrow D \mid N \]
\[D \rightarrow 0 \mid 1 \mid \ldots \mid 9 \]
\[I \rightarrow IA \mid A \]
\[A \rightarrow \text{a} \mid \text{b} \mid \ldots \mid \text{z} \]

Figure 12.5 A denotational definition for the sample language extended with assignment statements and environments (continues)
Semantic Domains

Domain \(v \): Integer = \(\ldots, -2, -1, 0, 1, 2, \ldots \)

Operations

\(+ : \text{Integer} \times \text{Integer} \rightarrow \text{Integer}\)
\(- : \text{Integer} \times \text{Integer} \rightarrow \text{Integer}\)
\(* : \text{Integer} \times \text{Integer} \rightarrow \text{Integer}\)

Domain \(Env \): Environment = Identifier \(\rightarrow \) Integer

Semantic Functions

\(P : \text{Program} \rightarrow \text{Environment} \)

\(P([L]) = L([L])(Env) \)

\(L : \text{Statement-list} \rightarrow \text{Environment} \rightarrow \text{Environment} \)

\(L([L_1, \ldots, L_n]) = L([L_2]) \cdot L([L_1]) \)

\(L([S]) = S([S]) \)

Figure 12.5 A denotational definition for the sample language extended with assignment statements and environments (continued)

S : Statement \rightarrow Environment \rightarrow Environment

\(S[[I \leftarrow E]](Env) = Env \& \{ I = E[[E]][Env]\} \)

E : Expression \rightarrow Environment \rightarrow Integer

\(E[[E_1 + E_2]](Env) = E[[E_1]][Env] + E[[E_2]][Env] \)
\(E[[E_1 - E_2]](Env) = E[[E_1]][Env] - E[[E_2]][Env] \)
\(E[[E_1 \times E_2]](Env) = E[[E_1]][Env] \times E[[E_2]][Env] \)
\(E[[E_1 / E_2]](Env) = E[[E_1]][Env] / E[[E_2]][Env] \)
\(E[[I]](Env) = E(\{ I \}) \)
\(E[[N]](Env) = N[[N]] \)

N: Number \rightarrow Integer

\(N[[ND]] = 10 \times N[[N]] + N[[D]] \)
\(N[[D]] = D[[D]] \)

D : Digit \rightarrow Integer

\(D[\leftarrow 0] = 0, D[\leftarrow 1] = 1, \ldots, D[\leftarrow 9] = 9 \)

Figure 12.5 A denotational definition for the sample language extended with assignment statements and environments
Denotational Semantics of Control Statements

- If and while statements have this abstract syntax:

 $S : \text{Statement}$

 $S \rightarrow \text{if } E \text{ then } L_1 \text{ else } L_2 \text{ fi}$

 $| \text{while } E \text{ do } L \text{ od}$

- Denotational semantics is given by a function from environments to environments:

 $S : \text{Statement} \rightarrow \text{Environment} \rightarrow \text{Environment}$

- Semantic function of the if statement:

 $S[[\text{if } E \text{ then } L_1 \text{ else } L_2 \text{ fi}])(Env)] =$

 if $E[[E]](Env) > 0$ then $L[[L_1]](Env)$ else $L[[L_2]](Env)$

Denotational Semantics of Control Statements (cont’d.)

- Semantic function for the while statement is more difficult

 – Can construct a function as a set by successively extending it to a least-fixed-point solution, the “smallest” solution satisfying the equation

 – Here, F will be a function on the semantic domain of environments

- Must also deal with nontermination in loops by assigning the “undefined” value \perp
Denotational Semantics of Control Statements (cont’d.)

- The domain of environments becomes a lifted domain:
 \[\text{Environment}_\bot = (\text{Identifier} \rightarrow \text{Integer})_\bot \]
- Semantic function for statements is defined as:
 \[S : \text{Statement} \rightarrow \text{Environment}_\bot
ightarrow \text{Environment}_\bot \]

Implementing Denotational Semantics in a Programming Language

- We will use Haskell for a possible implementation of the denotational functions of the sample language
- Abstract syntax of expressions:
 \[
 \text{data Expr} = \text{Val Int} \mid \text{Ident String} \mid \text{Plus Expr Expr} \\
 \mid \text{Minus Expr Expr} \mid \text{Times Expr Expr}
 \]
- We ignore the semantics of numbers and simply let values be integers
Implementing Denotational Semantics in a Programming Language (cont’d.)

• Assume we have defined an Environment type with a lookup and update operation
• The \(\mathcal{E} \) evaluation function can be defined as:

\[
\begin{align*}
\text{exprE} & : \text{Expr} \to \text{Environment} \to \text{Int} \\
\text{exprE} (\text{Plus e1 e2}) \text{ env} & = (\text{exprE e1 env}) + (\text{exprE e2 env}) \\
\text{exprE} (\text{Minus e1 e2}) \text{ env} & = (\text{exprE e1 env}) - (\text{exprE e2 env}) \\
\text{exprE} (\text{Times e1 e2}) \text{ env} & = (\text{exprE e1 env}) \times (\text{exprE e2 env}) \\
\text{exprE} (\text{Val n}) \text{ env} & = n \\
\text{exprE} (\text{Ident a}) \text{ env} & = \text{lookup env a}
\end{align*}
\]

Axiomatic Semantics

• **Axiomatic semantics**: define the semantics of a program, statement, or language construct by describing the effect its execution has on assertions about the data manipulated by the program
• Elements of mathematical logic are used to specify the semantics, including logical axioms
• We consider logical assertions to be statements about the behavior of the program that are true or false at any moment during execution
Axiomatic Semantics (cont’d.)

- **Preconditions**: assertions about the situation just before execution
- **Postconditions**: assertions about the situation just after execution
- Standard notation is to write the precondition inside curly brackets just before the construct and write the postcondition similarly just after the construct:

\[
\{ x = A \} x := x + 1 \{ x = A + 1 \}
\quad \text{or} \quad
\{ x = A \} x := x + 1
\{ x = A + 1 \}
\]

Axiomatic Semantics (cont’d.)

- Example: \(x := 1 / y \)
 - Semantics become:
 \[
 \{ y \neq 0 \} \\
 x := 1 / y \\
 \{ x = 1/y \}
 \]
 - Such pre- and postconditions are often capable of being tested for validity during execution, as a kind of error checking
 - Conditions are usually Boolean expressions
- In C, can use the `assert.h` macro library for checking assertions
Axiomatic Semantics (cont’d.)

- An **axiomatic specification** of the semantics of the language construct \(C \) is of the form \(\{P\} \ C \{Q\} \)
 - Where \(P \) and \(Q \) are assertions
 - If \(P \) is true just before execution of \(C \), then \(Q \) is true just after execution of \(C \)
- This representation of the action of \(C \) is not unique and may not completely specify all actions of \(C \)
- **Goal-oriented activity**: way to associate to \(C \) a general relation between precondition \(P \) and postcondition \(Q \)
 - Work backward from the goal to the requirements

Axiomatic Semantics (cont’d.)

- There is one precondition \(P \) that is the **most general** or **weakest** assertion with the property that \(\{P\} \ C \{Q\} \)
 - Called the **weakest precondition** of postcondition \(Q \) and construct \(C \)
 - Written as \(wp(C,Q) \)
 - Can now restate the property as

\[
\{P\} \ C \{Q\} \text{ if and only if } P \rightarrow wp(C,Q)
\]
Axiomatic Semantics (cont’d.)

- We define the axiomatic semantics of language construct \(C \) as the function \(wp(C, _ \) \) from assertion to assertion
 - Called a **predicate transformer**: takes a predicate as argument and returns a predicate result
 - Computes the weakest precondition from any postcondition
- Example assignment can now be restated as:
 \[wp(x := 1/y, \ x = 1/y) = \{ y \neq 0 \} \]

General Properties of \(wp \)

- Predicate transformer \(wp(C, Q) \) has certain properties that are true for almost all language constructs \(C \)
- **Law of the Excluded Miracle**: \(wp(C, false) = false \)
 - There is nothing a construct \(C \) can do that will make false into true
- **Distributivity of Conjunction**: \(wp(C, P \ and \ Q) = wp(C, P) \ and \ wp(C, Q) \)
- **Law of Monotonicity**:
 - if \(Q \rightarrow R \) then \(wp(C, Q) \rightarrow wp(C, R) \)
General Properties of wp (cont’d.)

- **Distributivity of Disjunction:**

 $$wp(C,P) \text{ or } wp(C,Q) \rightarrow wp(C,P \text{ or } Q)$$

- The last two properties regard implication operator “\rightarrow” and “or” operator with equality if C is deterministic.

- The question of determinism adds complexity:
 - Care must be taken when talking about any language construct.

Axiomatic Semantics of the Sample Language

- The specification of the semantics of expressions alone is not commonly included in an axiomatic specification.

- Assertions in an axiomatic specifier are primarily statements about the side effects of constructs:
 - They are statements involving identifiers and environments.
Axiomatic Semantics of the Sample Language (cont’d.)

• Abstract syntax for which we will define the \(wp \) operator:

\[
\begin{align*}
P & \rightarrow L \\
L & \rightarrow L_1 \ ‘;’ \ L_2 \mid S \\
S & \rightarrow I \ ‘:=’ \ E \\
\end{align*}
\]

| ‘if’ \(E \) ‘then’ \(L_1 \) ‘else’ \(L_2 \) ‘fi’ \\
| ‘while’ \(E \) ‘do’ \(L \) ‘od’ \\

• The first two rules do not need separate specifications
 – The \(wp \) operator for program \(P \) is the same as for its associated statement-list \(L \)

Axiomatic Semantics of the Sample Language (cont’d.)

• **Statement-lists**: for lists of statements separated by a semicolon, we have:

\[
wp(L_1; L_2, Q) = wp(L_1, wp(L_2, Q))
\]

– The weakest precondition of a series of statements is the composition of the weakest preconditions of its parts

• **Assignment statements**: definition of \(wp \) is:

\[
wp(I := E, Q) = Q[E/I]
\]

– \(Q[E/I] \) is the assertion \(Q \), with \(E \) replacing all free occurrences of the identifier \(I \) in \(Q \)
Axiomatic Semantics
of the Sample Language (cont’d.)

• Recall that an identifier I is free in a logical assertion Q if it is not bound by either the existential quantifier “there exists” or the universal quantifier “for all”

• $wp(I := E, Q) = Q[E/I]$ says that for Q to be true after the assignment $I := E$, whatever Q says about I must be true about E before the assignment is executed.

• If statements: our semantics of the if statement state that the expression is true if it is greater than 0 and false otherwise.

Axiomatic Semantics
of the Sample Language (cont’d.)

• Given the if statement: $if \ E \ then \ L_1 \ else \ L_2 \ fi$

• The weakest precondition is defined as:

$$wp(if \ E \ then \ L_1 \ else \ L_2 \ fi, Q) =$$

$$((E > 0 \rightarrow wp(L_1, Q)) \ and \ (E \leq 0 \rightarrow wp(L_2, Q)))$$

• While statements: while E do L od executes as long as $E > 0$

• Must give an inductive definition based on the number of times the loop executes.

• Let $H_i(while \ E \ do \ L \ od, Q)$ be a statement that the loop executes i times and terminates satisfying Q.

Programming Languages, Third Edition

89
Axiomatic Semantics of the Sample Language (cont’d.)

- Then $H_0(\text{while } E \text{ do } L \text{ od}, Q) = E \leq 0$ and Q
- And $H_i(\text{while } E \text{ do } L \text{ od}, Q) = E > 0$ and $wp(L, Q \text{ and } E \leq 0)$
 $$ = E > 0 \text{ and } wp(L, H_i(\text{while } E \text{ do } L \text{ od}, Q))$$
- Continuing, we have in general that:
 $$H_{i+1}(\text{while } E \text{ do } L \text{ od}, Q) =$$
 $$E > 0 \text{ and } wp(L, H_i(\text{while } E \text{ do } L \text{ od}, Q))$$
- Now we define:
 $$wp(\text{while } E \text{ do } L \text{ od}, Q)$$
 $$= \text{ there exists an } i \text{ such that } H_i(\text{while } E \text{ do } L \text{ od}, Q)$$

Note that this definition of the semantics of the while requires that the loop terminates.

A non-terminating loop always has false as its weakest precondition (it can never make a postcondition true)

$$wp(\text{while } 1 \text{ do } L \text{ od}, Q) = \text{ false, for all } L \text{ and } Q$$

These semantics for loops are difficult to use in the area of proving correctness of programs.
Proofs of Program Correctness

• The major application of axiomatic semantics is as a tool for proving correctness of programs
• Recall that C satisfies a specification \(\{P\} C \{Q\} \), provided \(P \rightarrow wp(C, Q) \)
• To prove correctness:
 1. Compute \(wp \) from the axiomatic semantics and general properties of \(wp \)
 2. Show that \(P \rightarrow wp(C, Q) \)

Proofs of Program Correctness (cont’d.)

• To show that a while-statement is correct, we only need an approximation of its weakest precondition, that is some assertion \(W \) such that
 \[
 W \rightarrow wp(\text{while} \ldots, Q)
 \]
• If we can show that \(P \rightarrow W \), we have also shown the correctness of \(\{P\} \text{ while} \ldots \{Q\} \), since \(P \rightarrow W \) and \(W \rightarrow wp(\text{while} \ldots, Q) \) imply that \(P \rightarrow wp(\text{while} \ldots, Q) \)
Proofs of Program Correctness
(cont’d.)

• Given the loop `while E do L od` we need to find an assertion \(W \) such that these conditions are true:

 (a) \(W \) and \((E > 0) \) \(\rightarrow \) \(wp(L,W) \)

 (b) \(W \) and \((E \leq 0) \) \(\rightarrow \) \(Q \)

 (c) \(P \rightarrow W \)

 – Every time the loop executes, \(W \) continues to be true by condition (a)

 – When the loop terminates, (b) says \(Q \) must be true

 – (c) implies that \(W \) is the required approximation for \(wp(while \ldots ,Q) \)

Proofs of Program Correctness
(cont’d.)

• An assertion \(W \) satisfying condition (a) is called a loop invariant for the loop, since a repetition of the loop leaves \(W \) true

 – In general, loops have many invariants \(W \)

 – Must find an appropriate \(W \) that also satisfies conditions (b) and (c)