Math 121 Calculus II
First Test Answers
February 2014

1. [20; 10 points each part] Indefinite integrals and antiderivatives.
 a. A function f has the derivative $f'(x) = 6x^2 - 6x + 4$, and $f(2) = 3$. Determine the function f from that information.

 First integrate f' to determine that $f(x)$ has the form

 $$f(x) = 2x^3 - 3x^2 + 4x + C$$

 then use the condition $f(2) = 3$ to determine the value of C. Since

 $$f(2) = 2(2^3) - 3(2^2) + 4(2) + C = 12 + C$$

 therefore $C = -9$. Thus, $f(x) = 2x^3 - 3x^2 + 4x - 9$.

 b. Evaluate the indefinite integral

 $$\int (\sec^2 x + 3\tan x) \, dx = \tan x + \frac{1}{3} \sin 3x + C$$

2. [20; 10 points each part] On definite integrals. Evaluate the following integrals. Show your work for credit. (You do not have to find the answer decimally; an unsimplified expression involving numbers is sufficient.)

 a. $\int_0^{\pi/4} \sin^2 x \cos x \, dx$

 The substitution $u = \sin x$ suggests itself since it’s the inner function in the composition $(\sin x)^2$. Then $du = \cos x \, dx$. Note that when $x = 0$, $u = \sin 0 = 0$, and when $x = \pi/4$, $u = \sin \pi/4 = \sqrt{2}/2$. So the integral becomes

 $$\int_0^{\sqrt{2}/2} u^2 \, du = \frac{1}{3} u^3 \bigg|_0^{\sqrt{2}/2}$$

 which equals $\frac{1}{3} (\sqrt{2}/2)^3$.

 b. $\int_3^5 \frac{1}{x + 2} \, dx$

 You may identify an antiderivative right away, but if not, the substitution $u = x + 2$, $du = dx$, will simplify the integral. You’ll get

 $$\int_5^7 \frac{1}{u} \, du = \ln u \bigg|_5^7 = \ln 7 - \ln 5$$

3. [20; 10 points each part] On integrals and derivatives. Let $f(x) = \int_2^x \frac{t^3 + 3}{t^2 + 1} \, dt$. Then $f'(3)$ equals (circle one)

 A) 11/5 B) 6 C) 4/5
 D) 1 E) 0 F) 3

 The derivative of the integral is the integrand, so

 $$f'(x) = \frac{x^3 + 3}{x^2 + 1}.$$ Therefore,

 $$f'(3) = \frac{3^3 + 3}{3^2 + 1} = \frac{30}{10}$$

 Therefore, the answer is F.

 b. In the first semester of calculus, you found derivatives of various functions like

 $$f(x) = \left(\frac{3x}{x^2 + 1}\right)^4.$$ For that one, you used the chain rule and the quotient rule to find that

 $$f'(x) = \frac{324x^3(1 - x^2)}{(x^2 + 1)^5}.$$ Use that result to evaluate the following integral

 $$\int_0^2 \frac{x^3(1 - x^2)}{(x^2 + 1)^5} \, dx$$
Except for the constant factor of 324, the integrand is equal to \(f'(x) \). Therefore, the integral is equal to

\[
\frac{1}{324} f(x) \bigg|_0^2 = \frac{1}{324} (f(2) - f(0)) = \frac{1}{324} \left(\frac{6}{5} \right)^4
\]

4. [10] **On areas between curves.** Write down an integral which gives area of the finite region bounded between \(y = 4 - x^2 \) and \(y = 4 - 2x \) for \(0 \leq x \leq 2 \), sketched below. Do not compute the value of the integral.

![Graph of curves](image)

The area \(A \) is the integral of the cross sectional length. That length at \(x \) is \((4 - x^2) - (4 - 2x) = 2x - x^2\). Therefore, the area is

\[
A = \int_0^4 (2x - x^2) \, dx.
\]

5. [10] **On volumes of solids of revolution.** The region described in 4 is rotated about the \(x \)-axis to create a solid of revolution. Write down an integral which gives the volume of that solid. Do not compute the value of the integral.

The volume \(V \) is the integral of the cross sectional area \(A(x) \). The cross section at \(x \) is the “washer” whose inner radius is \(4 - 2x \) and whose outer radius is \(4 - x^2 \). Therefore,

\[
A(x) = \pi (4 - x^2)^2 - \pi (4 - 2x)^2.
\]

Thus, the volume is

\[
V = \int_0^2 \left(\pi (4 - x^2)^2 - \pi (4 - 2x)^2 \right) \, dx
\]

which, of course, can be simplified.

Note that the integral \(\int_0^2 (\pi (4 - x^2)^2 - \pi (4 - 2x)^2) \, dx \) describes the volume of a different solid entirely.

6. [20; 10 points each part] **On arc lengths and surfaces of revolution.** Consider the curve given by the equation \(y = \ln x \) between \(x = 1 \) and \(x = e \).

a. Write down an integral which gives the length of this curve. Do not evaluate the integral.

The arclength is

\[
\int_a^b ds = \int_a^b \sqrt{1 + \left(\frac{dy}{dx} \right)^2} \, dx
\]

Here, \(\frac{dy}{dx} = 1/x \), so the integral is

\[
\int_1^3 \sqrt{1 + 1/x^2} \, dx
\]

b. That curve is rotated around the \(x \)-axis to form a surface of revolution. Write down an integral which gives the area of that surface. Do not compute the value of the integral.

The surface area \(A \) is \(\int_a^b 2\pi y \, ds \) where \(ds \) is as in part a, and \(y = \ln x \). Therefore,

\[
A = \int_1^e 2\pi (\ln x) \sqrt{1 + 1/x^2} \, dx.
\]