CLARK
 UNIVERSITY

Math 121 Calculus II

Second Test Answers
March 2015

Scale. $98-100 \mathrm{~A}+, 93-97 \mathrm{~A}, 89-92 \mathrm{~A}-, 84-88 \mathrm{~B}+$, 79-83 B, $74-78 \mathrm{~B}-, 70-73 \mathrm{C}+, 60-69 \mathrm{C}, 53-59 \mathrm{C}$, 45-52 D+, 35-44 D. Median 74. Students with C+ or lower should attend tutoring sessions.

1. [16] Evaluate the following indefinite integral.

$$
\int \frac{\sqrt{x^{2}-4}}{x} d x
$$

A trig sub works best here. Let $x=2 \sec \theta$ so that $\sqrt{x^{2}-4}=2 \tan \theta$ and $d x=2 \sec \theta \tan \theta d \theta$. Then the integral becomes

$$
2 \int \tan ^{2} \theta d \theta
$$

You can integrate that with the help of the Pythagorean identity $\sec ^{2} \theta=1+\tan ^{2} \theta$, so the integral equals

$$
2 \int\left(\sec ^{2} \theta-1\right) d \theta=2 \tan \theta-\theta+C
$$

Using the orignal substitution we can write that in terms of x as

$$
\sqrt{x^{2}-4}-\operatorname{arcsec} \frac{x}{2}+C
$$

2. $[24 ; 12$ points each part $]$ Evaluate the following indefinite integrals.
a. $\int x^{2} \sin x d x$

First use an integration by parts with $u=x^{2}$ and $d v=\sin x d x$ so that $d u=2 x d x$ and $v=-\cos x$.

Note that to find v you have to integrate $\sin x$, not differentiate it. That converts the integral to

$$
-x^{2} \cos x+\int 2 x \cos x d x
$$

To integrate the new integral, you'll need another integration by parts which results in the answer

$$
-x^{2} \cos x+2 x \sin x+2 \cos x+C
$$

b. $\int \cos ^{3} x \sin ^{2} x d x$

For this product of powers of trig functions, note that the power of $\cos x$ is odd, so the substitution $u=\sin x$ with $d u=\cos x d x$ will work. First use the Pythagorean identity $\sin ^{2} x+\cos ^{2} x=1$ to rewrite the integral as

$$
\int\left(1-\sin ^{2} x\right) \cos x \sin ^{2} x d x
$$

then make the substitution to finish the integration

$$
\begin{aligned}
\int\left(1-u^{2}\right) u^{2} d u & =\int\left(u^{2}-u^{4}\right) d u \\
& =\frac{1}{3} u^{3}-\frac{1}{5} u^{5}+C \\
& =\frac{1}{3} \sin ^{3} x-\frac{1}{5} \sin ^{5} x+C
\end{aligned}
$$

3. [12] Evaluate the following definite integral.

$$
\int_{1}^{e} x \ln x d x
$$

You can integrate

$$
\int x \ln x d x
$$

by parts with $u=\ln x$ and $d v=x d x$ so that $d u=$ $\frac{1}{x} d x$ and $v=\frac{1}{2} x^{2}$. (Note that you have to integrate x to find v.) Then

$$
\begin{aligned}
\int x \ln x d x & =\frac{1}{2} x^{2} \ln x-\int \frac{1}{2} x d x \\
& =\frac{1}{2} x^{2} \ln x-\frac{1}{4} x^{2}
\end{aligned}
$$

Evaluate that between 1 and e to get

$$
\left(\frac{1}{2} e^{2}-\frac{1}{4} e^{2}\right)-\left(0-\frac{1}{4}\right)=\frac{1}{4}\left(e^{2}+1\right)
$$

4. [12] Solve the separable differential equation

$$
\frac{d y}{d x}=e^{-y} \cos x
$$

Your answer should express y as a function of x.
First separate the variables to get $e^{y} d y=$ $\cos x d x$. Integrate that giving

$$
\int e^{y} d y=\int \cos x d x
$$

The integral of the left side is e^{y}, and the integral of the right side is $\sin x$, therefore

$$
e^{y}=\sin x+C
$$

where C is an arbitrary constant. Solve that equation for y to get

$$
y=\ln (\sin x+C)
$$

5. [20] Consider the rational function

$$
7 x+7 x^{2}+3 x-10
$$

a. [4] Factor the denominator.

$$
x^{2}+3 x-10=(x+5)(x-2)
$$

b. [8] Write the rational function as a sum of partial fractions.

It will look like

$$
\frac{7 x+7}{x^{2}+3 x-10}=\frac{A}{x+5}+\frac{B}{x-2}
$$

where you have to determine the constants A and B. Do that by clearing the denominators.

$$
7 x+7=A(x-2)+B(x+5)
$$

At this point there are various methods you can use to determine A and B. One way is to set x to convenient values such as the roots of the polynomial $x^{2}+3 x-10$. For $x=2$, the equation says $21=B 7$, so $B=3$. For $x=-5$, the equation
says $-28=A-7$, so $A=4$. We can now write the rational function as

$$
\frac{7 x+7}{x^{2}+3 x-10}=\frac{4}{x+5}+\frac{3}{x-2}
$$

c. [8] Use what you found in part b to evaluate this integral.

$$
\int \frac{7 x+7}{x^{2}+3 x-10} d x
$$

It is equal to
$\int\left(\frac{4}{x+5}+\frac{3}{x-2}\right) d x=4|\ln (x+5)|+3|\ln (x-2)|+C$
6. [16; 8 points each part] The most common form of radium, radium-226, has a half life of 1601 years.
a. Write down an formula that gives the amount y of radium left after a period of t years when the initial amount is A.

One formula that works is $y=A\left(\frac{1}{2}\right)^{t / 1601}$. You could also write it as $y=A e^{k t}$ and determine k by solving the equation $\frac{1}{2}=e^{1601 k}$. You'll find $k=$ $\frac{-\ln 2}{1601}$.
b. Use that formula to determine when only $\frac{1}{3}$ of the initial amount will remain. (Leave your answer in terms of exponents and logs.)

Solve $y=\frac{1}{3} A$ using your formula from part a. You'll find $t=1601 \frac{\ln 3}{\ln 2}$ (which works out to be 2537.5)

