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The statements of ftc and ftc−1. Before we
get to the proofs, let’s first state the Fundamental
Theorem of Calculus and the Inverse Fundamental
Theorem of Calculus. When we do prove them,
we’ll prove ftc−1 before we prove ftc. The ftc
is what Oresme propounded back in 1350.

(Sometimes ftc−1 is called the first fundamental
theorem and ftc the second fundamental theorem,
but that gets the history backwards.)

Theorem 1 (ftc). If F ′ is continuous on [a, b],
then ∫ b

a

F ′(x) dx = F (b)− F (a).

In other words, if F is an antiderivative of f , then∫ b

a

f(x) dx = F (b)− F (a).

A common notation for F (b)− F (a) is F (x)

∣∣∣∣b
a

.

There are stronger statements of these theorems
that don’t have the continuity assumptions stated
here, but these are the ones we’ll prove.

Theorem 2 (ftc−1). If f is a continuous function
on the closed interval [a, b], and F is its accumula-
tion function defined by

F (x) =

∫ x

a

f(t) dt

for x in [a, b], then F is differentiable on [a, b] and its
derivative is f , that is, F ′(x) = f(x) for x ∈ [a, b].

Frequently, the conclusion of this theorem is writ-
ten

d

dx

∫ x

a

f(t) dt = f(x).

Note that a different variable t is used in the in-
tegrand since x already has a meaning. Logicians
and computer scientists are comfortable using the
same variable for two different purposes, but they
have to resort to the concept of “scope” of a vari-
able in order to pull that off. It’s usually easier to
make sure that each variable only has one meaning.
Thus, we use one variable x as a limit of integration,
but a different variable t inside the integral.

Our first proof is of the ftc−1.

Proof of the ftc−1. First of all, since f is continu-
ous, it’s integrable, that is to say,

F (x) =

∫ x

a

f(t) dt

does exist.
We need to show that F ′(x) = f(x). By the

definition of derivatives,

F ′(x) = lim
h→0

F (x + h)− F (x)

h

= lim
h→0

1

h

(∫ x+h

a

f(t) dt−
∫ x

a

f(t) dt

)
= lim

h→0

1

h

∫ x+h

x

f(t) dt

We’ll show that this limit equals f(x). Although
a complete proof would consider both cases h < 0
and h > 0, we’ll only look at the case when h > 0;
the case for h < 0 is similar but more complicated
by negative signs.

We’ll concentrate on the values of the continu-
ous function f(x) on the closed interval [x, x + h].
On this interval, f takes on a minimum value mh

and a maximum value Mh (by the Extremal Value
Theorem for continuous functions on closed inter-
vals). Since mh ≤ f(t) ≤ Mh for t in this interval
[x, x + h], therefore when we take the definite inte-
grals on this interval, we have∫ x+h

x

mh dt ≤
∫ x+h

x

f(t) dt ≤
∫ x+h

x

Mh dt.
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But

∫ x+h

x

mh dt = hmh, and

∫ x+h

x

Mh dt = hMh,

so, dividing by h, we see that

mh ≤
1

h

∫ x+h

x

f(t) dt ≤Mh.

Now, f is continuous, so as h → 0 all the values
of f on the shortening interval [x, x + h] approach
f(x), so, in particular, both the minimum value
mh and the maximum value Mh approach f(x).
But if both mh and Mh approach the same number
f(x), then anything between them also approaches
it, too. Thus

lim
h→0

1

h

∫ x+h

x

f(t) dt = f(x)

thereby proving F ′(x) = f(x). q.e.d.

We’ll now go on to prove the ftc from the ftc−1.

Proof of the ftc. Let

G(x) =

∫ x

a

F ′(t) dt.

Then by ftc−1, G′(x) = F ′(x). Therefore, G and
F differ by a constant C, that is, G(x)−F (x) = C
for all x ∈ [a, b]. But

G(a) =

∫ a

a

F ′(t) dt = 0,

and G(a) − F (a) = C, so C = −F (a). Hence,
G(x)− F (x) = −F (a) for all x ∈ [a, b]. In particu-
lar, G(b)− F (b) = −F (a), so G(b) = F (b)− F (a),
that is, ∫ b

a

F ′(t) dt = F (b)− F (a).

q.e.d.
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