CLARK
 UNIVERSITY
 1887

e as the limit of $(1+1 / n)^{n}$ Math 121 Calculus II

Spring 2015
This is a small note to show that the number e is equal to a limit, specifically

$$
\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}=e
$$

Sometimes this is taken to be the definition of e, but I'll take e to be the base of the natural logarithms.

For a positive number x the natural logarithm of x is defined as the integral

$$
\ln x=\int_{1}^{x} \frac{1}{t} d t
$$

Then e is the unique number such that $\ln e=1$, that is,

$$
1=\int_{1}^{e} \frac{1}{t} d t
$$

The natural exponential function e^{x} is the function inverse to $\ln x$, and all the usual properties of logarithms and exponential functions follow.

Here's a synthetic proof that $e=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}$. A synthetic proof is one that begins with statements that are already proved and progresses one step at a time until the goal is achieved. A defect of synthetic proofs is that they don't explain why any step is made.
Proof. Let t be any number in an interval $\left[1,1+\frac{1}{n}\right]$. Then

$$
\frac{1}{1+\frac{1}{n}} \leq \frac{1}{t} \leq 1
$$

Therefore

$$
\int_{1}^{1+\frac{1}{n}} \frac{1}{1+\frac{1}{n}} d t \leq \int_{1}^{1+\frac{1}{n}} \frac{1}{t} d t \leq \int_{1}^{1+\frac{1}{n}} 1 d t
$$

The first integral equals $\frac{1}{n+1}$, the second equals $\ln \left(1+\frac{1}{n}\right)$, and the third equals $\frac{1}{n}$. Therefore,

$$
\frac{1}{n+1} \leq \ln \left(1+\frac{1}{n}\right) \leq \frac{1}{n}
$$

Ther

Exponentiating, we find that

$$
e^{\frac{1}{n+1}} \leq 1+\frac{1}{n} \leq e^{\frac{1}{n}}
$$

Taking the $(n+1)^{\text {st }}$ power of the left inequality gives us

$$
e \leq\left(1+\frac{1}{n}\right)^{n+1}
$$

while taking the $n^{\text {th }}$ power of the right inequality gives us

$$
\left(1+\frac{1}{n}\right)^{n} \leq e
$$

Together, they give us these important bounds on the value of e :

$$
\left(1+\frac{1}{n}\right)^{n} \leq e \leq\left(1+\frac{1}{n}\right)^{n+1}
$$

Divide the right inequality by $1+\frac{1}{n}$ to get

$$
\frac{e}{1+\frac{1}{n}} \leq\left(1+\frac{1}{n}\right)^{n}
$$

which we combine with the left inequality to get

$$
\frac{e}{1+\frac{1}{n}} \leq\left(1+\frac{1}{n}\right)^{n} \leq e
$$

But both $\frac{e}{1+\frac{1}{n}} \rightarrow e$ and $e \rightarrow e$, so by the pinching theorem

$$
\left(1+\frac{1}{n}\right)^{n} \rightarrow e
$$

also.
Q.E.D.

Math 121 Home Page at
http://math.clarku.edu/~ma121/

