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Pierre de Fermat (1601–1665), along with Descartes (1596–1650), invented the xy-
coordinate system and analytic geometry. Besides developing analytic geometry, Fermat
and Descartes were also early researchers in the subject that we now call calculus.

Here’s how Fermat evaluated the area under the graph of a power function y = xn, that
is, how he determined what we now write as∫ a

0

xn dx =
an+1

n + 1
.

Fermat wasn’t the only one to find this integral. Bonaventura Cavalieri (1598–1647)
published that result for positive integers n in 1647 using using a form of infinitesimal analysis
he had used since 1626. Fermat’s proof, however, is easier to follow, and it applies to positive
rational numbers n as well.

His general method is the same as those before and after him. He approached the area
by rectangular estimates.

Fermat partitioned the interval [0, a] is a clever way. Not all the subintervals were the
same size, but he had shorter intervals near 0 and longer intervals near a. Now, that seems
like it wouldn’t be as good an approximation as making all the subintervals the same length,
but it’s good enough, and it made the calculations work out. In fact, he selected this partition
so that the sum of the area of rectangles above the partition would be an infinite geometric
series.

Geometric series. We haven’t looked at infinite geometric series yet in our course, but
they were already understood over two centuries before Fermat.

We’ll study them in detail later, but we only need to know a little bit about them now.
An infinite geometric series is an infinite sum of terms where the ratio of each term to the
next is a constant, usually denoted r. If the first term of a series is denoted a, and the ratio

lies between −1 and 1, then the sum of the series is
a

1− r
, something Fermat knew well.

Fermat’s upper rectangular estimates. Choose any positive number E less than 1, and
partition the interval [0, a] so the last subinterval is [Ea, a], the one before that [E2a,Ea],
then [E3a,E2a], etc. There are infinitely many subintervals. The kth subinterval from the
right is [Ek+1a,Eka], and its length is Eka− Ek+1a.

Figure 1 displays Fermat’s rectangles for y = x3/2.
On each subinterval [Ek+1a,Eka], put a rectangle of shortest height that encloses the area

under the curve y = xn above that subinterval. That height occurs at the right endpoint Eka,
so that height is (Eka)n. Then that rectangle will have area (Eka)n(Eka − Ek+1a), which
simplifies as

E(n+1)kan+1(1− E).
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Figure 1: Fermat’s rectangles for y = xn

Fermat then computed the total area of all the rectangles, which is

∞∑
k=0

E(n+1)kan+1(1− E).

Thats a geometric series whose first term is an+1(1−E) and whose ratio is En+1, so its sum
is equal to

an+1(1− E)

1− En+1
= an+1 1− E

1− En+1
.

That’s an upper rectangular estimate for the area under the curve. As the partition becomes
finer, that is, as E approaches 1, this upper rectangular estimate will approach the area under

the curve. That means we need to see what
1− E

1− En+1
approaches as E → 1.

We can use l’Hôptal’s rule to evaluate that limit, but it hadn’t been invented in Fer-
mat’s time. We’ll look at how Fermat evaluated that limit when n is a positive in-

teger. Note that
1− E

1− En+1
can be rewritten as

1

1 + E + E2 + · · ·+ En
, so as E → 1,

1

1 + E + E2 + · · ·+ En
→ 1

n + 1
. Fermat also showed that when n was a positive ratio-

nal number p/q that the limit was also
1

n + 1
. (An interesting exercise. See if you can do

it.)

Therefore, the upper rectangular estimate approaches
an+1

n + 1
.

A similar analysis shows that lower rectangular estimates also approaches this same num-
ber. Since the area under the curve lies between the lower and upper rectangular estimates,
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and both approach this same number, therefore the area under the curve does equal
an+1

n + 1
.

Source: Carl B. Boyer and Uta C. Merzbach’s A History of Mathematics, second edition, New York,

Wiley & Sons, 1989, pages 350–352.
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