

Practice Integration Math 121 Calculus II Spring 2015

This first set of indefinite integrals, that is, antiderivatives, only depends on a few principles of integration, the first being that integration is inverse to differentiation. Besides that, a few rules can be identified: a constant rule, a power rule, linearity, and a limited few rules for trigonometric, logarithmic, and exponential functions.

$$\int k \, dx = kx + C, \quad \text{where } k \text{ is a constant}$$

$$\int x^n \, dx = \frac{1}{n+1} x^{n+1} + C, \quad \text{if } n \neq -1$$

$$\int \frac{1}{x} \, dx = \ln|x| + C$$

$$\int kf(x) \, dx = k \int f(x) \, dx$$

$$\int (f(x) \pm g(x)) \, dx = \int f(x) \, dx \pm \int g(x) \, dx$$

$$\int \sin x \, dx = -\cos x + C$$

$$\int \cos x \, dx = \sin x + C$$

$$\int e^x \, dx = e^x + C$$

$$\int \frac{1}{1+x^2} \, dx = \arctan x + C$$

$$\int \frac{1}{\sqrt{1-x^2}} \, dx = \arcsin x + C$$

We'll add more rules later, but there are plenty here to get acquainted with.

Here's a list of practice exercises. There's a hint for each one as well as an answer with intermediate steps.

1.
$$\int (x^4 - x^3 + x^2) dx$$
. Hint. Answer.

2.
$$\int (5t^8 - 2t^4 + t + 3) dt$$
. Hint. Answer.

3.
$$\int (7u^{3/2} + 2u^{1/2}) du$$
. Hint. Answer.

4.
$$\int (3x^{-2} - 4x^{-3}) dx$$
. Hint. Answer.

5.
$$\int \frac{3}{x} dx$$
. Hint. Answer.

6.
$$\int \left(\frac{4}{3t^2} + \frac{7}{2t}\right) dt$$
. Hint. Answer.

7.
$$\int \left(5\sqrt{y} - \frac{3}{\sqrt{y}}\right) dy$$
. Hint. Answer.

8.
$$\int \frac{3x^2 + 4x + 1}{2x} dx$$
. Hint. Answer.

9.
$$\int (2\sin\theta + 3\cos\theta) d\theta$$
. Hint. Answer.

10.
$$\int (5e^x - e) dx$$
. Hint. Answer.

11.
$$\int \frac{4}{1+t^2} dt$$
. Hint. Answer.

12.
$$\int (e^{x+3} + e^{x-3}) dx$$
. Hint. Answer.

13.
$$\int \frac{7}{\sqrt{1-u^2}} du$$
. Hint. Answer.

14.
$$\int \left(r^2 - 2r + \frac{1}{r}\right) dr$$
. Hint. Answer.

15.
$$\int \frac{4\sin x}{3\tan x} dx$$
. Hint. Answer.

16.
$$\int (7\cos x + 4e^x) dx$$
. Hint. Answer.

17.
$$\int \sqrt[3]{7v} \, dv$$
. Hint. Answer.

18.
$$\int \frac{4}{\sqrt{5t}} dt$$
. Hint. Answer.

19.
$$\int \frac{1}{3x^2+3} dx$$
. Hint. Answer.

20.
$$\int \frac{x^4 - 6x^3 + e^x \sqrt{x}}{\sqrt{x}} dx$$
. Hint. Answer.

1. Hint. $\int (x^4 - x^3 + x^2) dx$.

Integrate each term using the power rule,

$$\int x^n \, dx = \frac{1}{n+1} x^{n+1} + C.$$

So to integrate x^n , increase the power by 1, then divide by the new power. Answer.

2. Hint.
$$\int (5t^8 - 2t^4 + t + 3) dt.$$

Remember that the integral of a constant is the constant times the integral. Another way to say that is that you can pass a constant through the integral sign. For instance,

$$\int 5t^8 \, dt = 5 \int t^8 \, dt$$

Integrating polynomials is fairly easy, and you'll get the hang of it after doing just a couple of them. Answer.

3. Hint.
$$\int (7u^{3/2} + 2u^{1/2}) du.$$

You can use the power rule for other powers besides integers. For instance,

$$\int u^{3/2} \, du = \frac{2}{5} u^{5/2} + C$$

Answer.

4. Hint.
$$\int (3x^{-2} - 4x^{-3}) dx$$

You can even use the power rule for negative exponents (except -1). For example,

$$\int x^{-3} \, dx = -\frac{1}{2}x^{-2} + C$$

Answer.

5. Hint.
$$\int \frac{3}{x} dx$$

This is $3x^{-1}$ and the general power rule doesn't apply. But you can use

$$\int \frac{1}{x} \, dx = \ln|x| + C.$$

Answer.

6. Hint.
$$\int \left(\frac{4}{3t^2} + \frac{7}{2t}\right) dt$$

Treat the first term as $\frac{4}{3}t^{-2}$ and the second term as $\frac{7}{2}t^{-1}$. Answer.

7. Hint.
$$\int \left(5\sqrt{y} - \frac{3}{\sqrt{y}}\right) dy$$

It's usually easier to turn those square roots into fractional powers. So, for instance, $\frac{1}{\sqrt{y}}$ is $y^{-1/2}$. Answer.

8. Hint.
$$\int \frac{3x^2 + 4x + 1}{2x} dx$$

Use some algebra to simplify the integrand, that is, divide by 2x before integrating. Answer.

9. Hint.
$$\int (2\sin\theta + 3\cos\theta) d\theta$$

Getting the \pm signs right when integrating sines and cosines takes practice. Answer.

10. Hint.
$$\int (5e^x - e) dx$$

Just as the derivative of e^x is e^x , so the integral of e^x is e^x . Note that the -e in the integrand is a constant. Answer.

11. Hint.
$$\int \frac{4}{1+t^2} dt$$

Remember that the derivative of $\arctan t$ is $\frac{1}{1+t^2}$. Answer.

12. Hint.
$$\int (e^{x+3} + e^{x-3}) \, dx$$

When working with exponential functions, remember to use the various rules of exponentiation. Here, the rules to use are $e^{a+b}=e^ae^b$ and $e^{a-b}=e^a/e^b$. Answer.

13. Hint.
$$\int \frac{7}{\sqrt{1-u^2}} du$$

Remember that the derivative of $\arcsin u$ is $\frac{1}{\sqrt{1-u^2}}$ Answer.

14. Hint.
$$\int \left(r^2 - 2r + \frac{1}{r}\right) dr$$

Use the power rule, but don't forget the integral of 1/r is $\ln |r| + C$. Answer.

15. Hint.
$$\int \frac{4\sin x}{3\tan x} dx$$

You'll need to use trig identities to simplify this. Answer.

16. Hint.
$$\int (7\cos x + 4e^x) dx$$

Just more practice with trig and exponential functions. Answer.

17. Hint.
$$\int \sqrt[3]{7v} \, dv$$

You can write $\sqrt[3]{7v}$ as $\sqrt[3]{7}\sqrt[3]{v}$. And remember you can write $\sqrt[3]{v}$ as $v^{1/3}$. Answer.

18. Hint.
$$\int \frac{4}{\sqrt{5t}} dt$$

Use algebra to write this in a form that's easier to integrate. Remember that $1/\sqrt{t}$ is $t^{-1/2}$. Answer.

19. Hint.
$$\int \frac{1}{3x^2+3} dx$$

You can factor out a 3 from the denominator to put it in a form you can integrate. Answer.

20. Hint.
$$\int \frac{x^4 - 6x^3 + e^x \sqrt{x}}{\sqrt{x}} \, dx$$

Divide through by \sqrt{x} before integrating. Alternatively, write the integrand as

$$x^{-1/2}(x^4 - 6x^3 + e^x x^{1/2})$$

and multiply. Answer.

1. Answer. $\int (x^4 - x^3 + x^2) dx$.

The integral is $\frac{1}{5}x^5 - \frac{1}{4}x^4 + \frac{1}{3}x^3 + C$.

Whenever you're working with indefinite integrals like this, be sure to write the +C. It signifies that you can add any constant to the antiderivative F(x) to get another one, F(x) + C.

When you're working with definite integrals with limits of integration, \int_a^b , the constant isn't needed since you'll be evaluating an antiderivative F(x) at b and a to get a numerical answer F(b) - F(a).

2. Answer.
$$\int (5t^8 - 2t^4 + t + 3) dt.$$
 The integral is $\frac{5}{9}t^9 - \frac{2}{5}t^5 + \frac{1}{2}t^2 + 3t + C$.

3. Answer.
$$\int (7u^{3/2} + 2u^{1/2}) du$$
.

This integral evaluates as $\frac{14}{5}u^{5/2} + \frac{4}{3}u^{3/2} + C$.

4. Answer.
$$\int (3x^{-2} - 4x^{-3}) dx.$$

That equals $-3x^{-1}+2x^{-2}+C$. If you prefer, you could write the answer as $-\frac{3}{x}+\frac{2}{x^2}+C$

5. Answer. $\int \frac{3}{x} dx$

That's $3 \ln |x| + C$. The reason the absolute value sign is there is that when x is negative, the derivative of $\ln |x|$ is 1/x, so by putting in the absolute value sign, you're covering that case, too.

6. Answer.
$$\int \left(\frac{4}{3t^2} + \frac{7}{2t}\right) dt.$$

The integral of $\frac{4}{3}t^{-2} + \frac{7}{2}t^{-1}$ is $-\frac{4}{3}t^{-1} + \frac{7}{2}\ln|t| + C$.

7. Answer.
$$\int \left(5\sqrt{y} - \frac{3}{\sqrt{y}}\right) dy.$$

The integral of $5y^{1/2}-3y^{-1/2}$ is $\frac{10}{3}y^{3/2}-6y^{1/2}+C$. You could write that as $\frac{10}{3}y\sqrt{y}-6\sqrt{y}+C$ if you prefer.

8. Answer.
$$\int \frac{3x^2 + 4x + 1}{2x} dx$$
.

The integral of $2x + 2 + \frac{1}{2}x^{-1}$ is

$$x^2 + 2x + \frac{1}{2}\ln|x| + C.$$

9. Answer.
$$\int (2\sin\theta + 3\cos\theta) d\theta.$$

That's equal to $-2\cos\theta + 3\sin\theta + C$.

10. Answer.
$$\int (5e^x - e) dx$$

That equals $5e^x - ex + C$.

11. Answer.
$$\int \frac{4}{1+t^2} dt$$
.

That evaluates as $4 \arctan t + C$. Some people prefer to write $\arctan t$ as $\tan^{-1} t$.

12. Answer.
$$\int (e^{x+3} + e^{x-3}) dx$$
.

The integrand is its own antiderivative, that is, the integral is equal to

$$e^{x+3} + e^{x-3} + C$$
.

If you write the integrand as $e^x e^3 + e^x/e^3$, and note that e^3 is just a constant, you can see that it's its own antiderivative.

13. Answer. $\int \frac{7}{\sqrt{1-u^2}} du$.

The integral equals $7 \arcsin u$.

14. Answer.
$$\int \left(r^2 - 2r + \frac{1}{r}\right) dr$$
.

The integral evaluates as

$$\frac{1}{3}r^3 - r^2 + \ln|r| + C.$$

15. Answer.
$$\int \frac{4\sin x}{3\tan x} dx$$

The integrand simplifies to $\frac{4}{3}\cos x$. Therefore the integral is $\frac{4}{3}\sin x + C$.

16. Answer.
$$\int (7\cos x + 4e^x) dx.$$

That's $7\sin x + 4e^x + C$.

17. Answer.
$$\int \sqrt[3]{7v} \, dv$$
.

Since you can rewrite the integrand as $\sqrt[3]{7} v^{1/3}$, therefore its integral is

$$\frac{3}{4}\sqrt[3]{7}v^{4/3} + C.$$

18. Answer.
$$\int \frac{4}{\sqrt{5t}} dt$$
.

The integral of
$$\frac{4}{\sqrt{5}}t^{-1/2}$$
 is equal to $\frac{8}{\sqrt{5}}t^{1/2} + C$.

You could also write that as $8\sqrt{t/5} + C$.

19. Answer.
$$\int \frac{1}{3x^2+3} dx$$

This integral equals $\frac{1}{3} \arctan x + C$.

20. Answer.
$$\int \frac{x^4 - 6x^3 + e^x \sqrt{x}}{\sqrt{x}} dx$$
.

The integral can be rewritten as

$$\int (x^{7/2} - 6x^{5/2} + e^x) \, dx$$

which equals $\frac{2}{9}x^{9/2} - \frac{12}{7}x^{7/2} + e^x + C$.

Math 121 Home Page at

http://math.clarku.edu/~ma121/