Practice Integration
 Math 121 Calculus II

Spring 2015
This first set of indefinite integrals, that is, antiderivatives, only depends on a few principles of integration, the first being that integration is inverse to differentiation. Besides that, a few rules can be identified: a constant rule, a power rule, linearity, and a limited few rules for trigonometric, logarithmic, and exponential functions.

$$
\begin{gathered}
\int k d x=k x+C, \quad \text { where } k \text { is a constant } \\
\int x^{n} d x=\frac{1}{n+1} x^{n+1}+C, \quad \text { if } n \neq-1 \\
\int \frac{1}{x} d x=\ln |x|+C \\
\int k f(x) d x=k \int f(x) d x \\
\int(f(x) \pm g(x)) d x=\int f(x) d x \pm \int g(x) d x \\
\int \sin x d x=-\cos x+C \\
\int \cos x d x=\sin x+C \\
\int e^{x} d x=e^{x}+C \\
\int \frac{1}{1+x^{2}} d x=\arctan x+C \\
\int \frac{1}{\sqrt{1-x^{2}} d x}=\begin{aligned}
\int \arcsin x+C
\end{aligned}
\end{gathered}
$$

We'll add more rules later, but there are plenty here to get acquainted with.

Here's a list of practice exercises. There's a hint for each one as well as an answer with intermediate steps.

1. $\int\left(x^{4}-x^{3}+x^{2}\right) d x$ Hint. Answer.
2. $\int\left(5 t^{8}-2 t^{4}+t+3\right) d t$ Hint. Answer.
3. $\int\left(7 u^{3 / 2}+2 u^{1 / 2}\right) d u$. Hint. Answer.
4. $\int\left(3 x^{-2}-4 x^{-3}\right) d x$. Hint. Answer.
5. $\int \frac{3}{x} d x$ Hint. Answer.
6. $\int\left(\frac{4}{3 t^{2}}+\frac{7}{2 t}\right) d t$ Hint. Answer.
7. $\int\left(5 \sqrt{y}-\frac{3}{\sqrt{y}}\right) d y$ Hint. Answer.
8. $\int \frac{3 x^{2}+4 x+1}{2 x} d x$. Hint. Answer.
9. $\int(2 \sin \theta+3 \cos \theta) d \theta$ Hint. Answer.
10. $\int\left(5 e^{x}-e\right) d x$ Hint. Answer.
11. $\int \frac{4}{1+t^{2}} d t$. Hint. Answer.
12. $\int\left(e^{x+3}+e^{x-3}\right) d x$ Hint. Answer.
13. $\int \frac{7}{\sqrt{1-u^{2}}} d u$ Hint. Answer.
14. $\int\left(r^{2}-2 r+\frac{1}{r}\right) d r$. Hint. Answer.
15. $\int \frac{4 \sin x}{3 \tan x} d x$. Hint. Answer.
16. $\int\left(7 \cos x+4 e^{x}\right) d x$ Hint. Answer.
17. $\int \sqrt[3]{7 v} d v$. Hint. Answer.
18. $\int \frac{4}{\sqrt{5 t}} d t$. Hint. Answer.
19. $\int \frac{1}{3 x^{2}+3} d x$. Hint. Answer.
20. $\int \frac{x^{4}-6 x^{3}+e^{x} \sqrt{x}}{\sqrt{x}} d x$. Hint. Answer.
21. Hint. $\int\left(x^{4}-x^{3}+x^{2}\right) d x$.

Integrate each term using the power rule,

$$
\int x^{n} d x=\frac{1}{n+1} x^{n+1}+C
$$

So to integrate x^{n}, increase the power by 1 , then divide by the new power. Answer.
2. Hint. $\int\left(5 t^{8}-2 t^{4}+t+3\right) d t$.

Remember that the integral of a constant is the constant times the integral. Another way to say that is that you can pass a constant through the integral sign. For instance,

$$
\int 5 t^{8} d t=5 \int t^{8} d t
$$

Integrating polynomials is fairly easy, and you'll get the hang of it after doing just a couple of them.
Answer.
3. Hint. $\int\left(7 u^{3 / 2}+2 u^{1 / 2}\right) d u$.

You can use the power rule for other powers besides integers. For instance,

$$
\int u^{3 / 2} d u=\frac{2}{5} u^{5 / 2}+C
$$

Answer.

4. Hint. $\int\left(3 x^{-2}-4 x^{-3}\right) d x$

You can even use the power rule for negative exponents (except -1). For example,

$$
\int x^{-3} d x=-\frac{1}{2} x^{-2}+C
$$

Answer.

5. Hint. $\int \frac{3}{x} d x$

This is $3 x^{-1}$ and the general power rule doesn't apply. But you can use

$$
\int \frac{1}{x} d x=\ln |x|+C
$$

Answer.
6. Hint. $\int\left(\frac{4}{3 t^{2}}+\frac{7}{2 t}\right) d t$

Treat the first term as $\frac{4}{3} t^{-2}$ and the second term as $\frac{7}{2} t^{-1}$. Answer.
7. Hint. $\int\left(5 \sqrt{y}-\frac{3}{\sqrt{y}}\right) d y$

It's usually easier to turn those square roots into fractional powers. So, for instance, $\frac{1}{\sqrt{y}}$ is $y^{-1 / 2}$. Answer.
8. Hint. $\int \frac{3 x^{2}+4 x+1}{2 x} d x$

Use some algebra to simplify the integrand, that is, divide by $2 x$ before integrating. Answer.
9. Hint. $\int(2 \sin \theta+3 \cos \theta) d \theta$

Getting the \pm signs right when integrating sines and cosines takes practice. Answer.
10. Hint. $\int\left(5 e^{x}-e\right) d x$

Just as the derivative of e^{x} is e^{x}, so the integral of e^{x} is e^{x}. Note that the $-e$ in the integrand is a constant. Answer.
11. Hint. $\int \frac{4}{1+t^{2}} d t$

Remember that the derivative of $\arctan t$ is $\frac{1}{1+t^{2}} \cdot$ Answer.
12. Hint. $\int\left(e^{x+3}+e^{x-3}\right) d x$

When working with exponential functions, remember to use the various rules of exponentiation. Here, the rules to use are $e^{a+b}=e^{a} e^{b}$ and $e^{a-b}=e^{a} / e^{b}$. Answer.
13. Hint. $\int \frac{7}{\sqrt{1-u^{2}}} d u$

Remember that the derivative of $\arcsin u$ is $\frac{1}{\sqrt{1-u^{2}}}$ Answer.
14. Hint. $\int\left(r^{2}-2 r+\frac{1}{r}\right) d r$

Use the power rule, but don't forget the integral of $1 / r$ is $\ln |r|+C$. Answer.
15. Hint. $\int \frac{4 \sin x}{3 \tan x} d x$

You'll need to use trig identities to simplify this. Answer.
16. Hint. $\int\left(7 \cos x+4 e^{x}\right) d x$

Just more practice with trig and exponential functions. Answer.
17. Hint. $\int \sqrt[3]{7 v} d v$

You can write $\sqrt[3]{7 v}$ as $\sqrt[3]{7} \sqrt[3]{v}$. And remember you can write $\sqrt[3]{v}$ as $v^{1 / 3}$. Answer.
18. Hint. $\int \frac{4}{\sqrt{5 t}} d t$

Use algebra to write this in a form that's easier to integrate. Remember that $1 / \sqrt{t}$ is $t^{-1 / 2}$. Answer.
19. Hint. $\int \frac{1}{3 x^{2}+3} d x$

You can factor out a 3 from the denominator to put it in a form you can integrate. Answer.
20. Hint. $\int \frac{x^{4}-6 x^{3}+e^{x} \sqrt{x}}{\sqrt{x}} d x$

Divide through by \sqrt{x} before integrating. Alternatively, write the integrand as

$$
x^{-1 / 2}\left(x^{4}-6 x^{3}+e^{x} x^{1 / 2}\right)
$$

and multiply. Answer.

1. Answer. $\int\left(x^{4}-x^{3}+x^{2}\right) d x$

The integral is $\frac{1}{5} x^{5}-\frac{1}{4} x^{4}+\frac{1}{3} x^{3}+C$.
Whenever you're working with indefinite integrals like this, be sure to write the $+C$. It signifies that you can add any constant to the antiderivative $F(x)$ to get another one, $F(x)+C$.

When you're working with definite integrals with limits of integration, \int_{a}^{b}, the constant isn't needed since you'll be evaluating an antiderivative $F(x)$ at b and a to get a numerical answer $F(b)-F(a)$.
2. Answer. $\int\left(5 t^{8}-2 t^{4}+t+3\right) d t$.

The integral is $\frac{5}{9} t^{9}-\frac{2}{5} t^{5}+\frac{1}{2} t^{2}+3 t+C$.
3. Answer. $\int\left(7 u^{3 / 2}+2 u^{1 / 2}\right) d u$.

This integral evaluates as $\frac{14}{5} u^{5 / 2}+\frac{4}{3} u^{3 / 2}+C$.
4. Answer. $\int\left(3 x^{-2}-4 x^{-3}\right) d x$.

That equals $-3 x^{-1}+2 x^{-2}+C$. If you prefer, you could write the answer as $-\frac{3}{x}+\frac{2}{x^{2}}+C$

5. Answer. $\int \frac{3}{x} d x$

That's $3 \ln |x|+C$. The reason the absolute value sign is there is that when x is negative, the derivative of $\ln |x|$ is $1 / x$, so by putting in the absolute value sign, you're covering that case, too.
6. Answer. $\int\left(\frac{4}{3 t^{2}}+\frac{7}{2 t}\right) d t$.

The integral of $\frac{4}{3} t^{-2}+\frac{7}{2} t^{-1}$ is $-\frac{4}{3} t^{-1}+\frac{7}{2} \ln |t|+C$.
7. Answer. $\int\left(5 \sqrt{y}-\frac{3}{\sqrt{y}}\right) d y$

The integral of $5 y^{1 / 2}-3 y^{-1 / 2}$ is $\frac{10}{3} y^{3 / 2}-6 y^{1 / 2}+C$. You could write that as $\frac{10}{3} y \sqrt{y}-6 \sqrt{y}+C$ if you prefer.
8. Answer. $\int \frac{3 x^{2}+4 x+1}{2 x} d x$

The integral of $2 x+2+\frac{1}{2} x^{-1}$ is

$$
x^{2}+2 x+\frac{1}{2} \ln |x|+C .
$$

9. Answer. $\int(2 \sin \theta+3 \cos \theta) d \theta$

That's equal to $-2 \cos \theta+3 \sin \theta+C$.
10. Answer. $\int\left(5 e^{x}-e\right) d x$

That equals $5 e^{x}-e x+C$.
11. Answer. $\int \frac{4}{1+t^{2}} d t$.

That evaluates as $4 \arctan t+C$. Some people prefer to write $\arctan t$ as $\tan ^{-1} t$.
12. Answer. $\int\left(e^{x+3}+e^{x-3}\right) d x$.

The integrand is its own antiderivative, that is, the integral is equal to

$$
e^{x+3}+e^{x-3}+C
$$

If you write the integrand as $e^{x} e^{3}+e^{x} / e^{3}$, and note that e^{3} is just a constant, you can see that it's its own antiderivative.

13. Answer.
 $$
\int \frac{7}{\sqrt{1-u^{2}}} d u
$$

The integral equals $7 \arcsin u$.
14. Answer. $\int\left(r^{2}-2 r+\frac{1}{r}\right) d r$

The integral evaluates as

$$
\frac{1}{3} r^{3}-r^{2}+\ln |r|+C
$$

15. Answer. $\int \frac{4 \sin x}{3 \tan x} d x$

The integrand simplifies to $\frac{4}{3} \cos x$. Therefore the integral is $\frac{4}{3} \sin x+C$.
16. Answer. $\int\left(7 \cos x+4 e^{x}\right) d x$.

That's $7 \sin x+4 e^{x}+C$.
17. Answer. $\int \sqrt[3]{7 v} d v$

Since you can rewrite the integrand as $\sqrt[3]{7} v^{1 / 3}$, therefore its integral is

$$
\frac{3}{4} \sqrt[3]{7} v^{4 / 3}+C
$$

18. Answer. $\int \frac{4}{\sqrt{5 t}} d t$

The integral of $\frac{4}{\sqrt{5}} t^{-1 / 2}$ is equal to $\frac{8}{\sqrt{5}} t^{1 / 2}+C$.
You could also write that as $8 \sqrt{t / 5}+C$.
19. Answer. $\int \frac{1}{3 x^{2}+3} d x$

This integral equals $\frac{1}{3} \arctan x+C$.
20. Answer. $\int \frac{x^{4}-6 x^{3}+e^{x} \sqrt{x}}{\sqrt{x}} d x$

The integral can be rewritten as

$$
\int\left(x^{7 / 2}-6 x^{5 / 2}+e^{x}\right) d x
$$

which equals $\frac{2}{9} x^{9 / 2}-\frac{12}{7} x^{7 / 2}+e^{x}+C$.
Math 121 Home Page at http://math.clarku.edu/~ma121/

