

Summary of definitions and theorems for sequences Math 121 Calculus II Spring 2015

This is a summary of the main points we've discussed in class about the infinite sequences. We'll use them soon in our study of series.

Definition 1. An infinite sequence of real numbers is simply a function $\mathbb{N} \to \infty$, written

$$a_1, a_2, a_3, \ldots, a_n, \ldots$$

or $\{a_n\}_{n=1}^{\infty}$.

When we have a particular sequence under consideration, we'll either write it out as a list, such as $1, \frac{1}{4}, \frac{1}{9}, \frac{1}{16}, \ldots$, or specify a general term as a formula, here it would be $a_n = 1/n^2$.

Definition 2 (Monotonicity). A sequence $\{a_n\}_{n=1}^{\infty}$ is said to be *increasing* or *strictly increasing* if for each n, $a_n < a_{n+1}$. It's *nondecreasing* or *weakly increasing* if for each n, $a_n \leq a_{n+1}$. Decreasing sequences are defined analogously. A sequence that satisfies any of these conditions is said to be *monotone*.

Definition 3 (Boundedness). A sequence is bounded if it is bounded as a set. More precisely $\{a_n\}_{n=1}^{\infty}$ is bounded below by B if $B \leq a_n$ for all n, and it's bounded above by U if $a_n \leq U$ for all n. If it's bounded both below and above, it's said to be bounded.

Definition 4 (Convergence and limits of sequences). A sequence is said to *converge* to the *limit L*, if for each $\epsilon > 0$, there is some N such that beyond the N^{th} term, every term is within ϵ of L. When the sequence is $\{a_n\}_{n=1}^{\infty}$, we'll write

 $\lim_{\substack{n\to\infty\\\text{convergence says}}} a_n = L$, or more briefly $a_n \to L$. Symbolically,

$$\forall \epsilon > 0, \exists N, \forall n \geq N, |a_n - L| < \epsilon.$$

A sequence that doesn't converge is said to diverge.

Note that limits of sequences are called discrete limits since the subscript n only takes integers as values, and the integers are separated from each other, that is, they're discrete.

Theorem 5. A sequence can have at most one limit.

Theorem 6. A nondecreasing sequence bounded above converges to its least upper bound. A nonincreasing sequence bounded below converges to its greatest lower bound.

Theorem 7. If two sequences have limits, $a_n \to A$ and $b_n \to B$, then their sum $a_n + b_n \to A + B$, their difference $a_n - b_n \to A - B$, and their product $a_n b_n \to AB$. Also, their quotient $a_n/b_n \to A/B$ provided $B \neq 0$.

Theorem 8. If $\lim_{x\to\infty} f(x) = L$, and $a_n = f(n)$, then $a_n \to L$, also

Theorem 9. If $a_n \to L$, and if f is a continuous function, then $f(a_n) \to f(L)$.

Theorem 10 (Pinching theorem). If $a_n \leq b_n \leq c_n$ for all n, and both $a_n \to L$ and $c_n \to L$, then $b_n \to L$, also.

Math 121 Home Page at http://math.clarku.edu/~ma121/