
Logarithms
Math 121 Calculus II

D Joyce, Spring 2015

You know all about logarithms already, but one of the best ways to define and prove
properties about them is by means of calculus. We’ll do that here. The main reason, however,
for going on this excursion is to see how logic is used in formal mathematics. We’ll use what
we know about calculus to prove statements about logs and exponents.

A definition in terms of areas. Consider the area below the standard hyperbola y = 1/x,
above the x-axis, and between the vertical lines x = 1 and x = b where b is a positive number.
We’ll treat this as a signed area, so that when b > 1 the area is counted positively, and when

0 < b < 1 we’ll count it negatively. In other words, consider the integral

∫ b

1

1

x
dx.
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Definition 1. The natural logarithm, or more simply the logarithm, of a positive number b,
denoted ln b or log b is defined as

ln b =

∫ b

1

1

x
dx.

The notation log b is standard in mathematics, but I’ll use ln b since that’s the notation
in our textbook.
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Properties of the logarithm function.

Theorem 2. ln 1 = 0

Proof. Since an integral whose lower limit of integration equals its upper limit of integration
is 0, therefore

ln 1 =

∫ 1

1

1

x
dx = 0.

q.e.d.

Theorem 3. The function lnx is differentiable and continuous on its domain (0,∞), and its

derivative is
d

dx
lnx =

1

x
.

Proof. By the inverse of the Fundamental Theorem of Calculus, since ln x is defined as an
integral, it is differentiable and its derivative is the integrand 1/x. As every differentiable
function is continuous, therefore lnx is continuous. q.e.d.

Theorem 4. These two properties, ln 1 = 0 and
d

dx
lnx =

1

x
, characterize the logarithm.

Proof. Any function f(x) whose derivative is f ′(x) = 1/x differs from ln x by a constant, so
if it agrees with lnx for one value of x, namely x = 1, then that constant is 0, so f(x) =
lnx. q.e.d.

Theorem 5. The logarithm of a product of two positive numbers is the sum of their loga-
rithms, that is, lnxy = lnx + ln y.

Proof. We’ll use a general principle here that if two functions have the same derivative on
an interval and they agree for one particular argument, then they are equal. It’s a useful
principle that can be used to prove identities like this.

Treat the left hand side of the equation as a function of x leaving y as a constant, thus,
f(x) = lnxy. Likewise, let the right hand side of the equation be g(x) = lnx + ln y where
again y is a constant and x is a variable.

Then, by the chain rule for derivatives,

d

dx
f(x) =

d

dx
(lnxy) =

1

xy

d

dx
xy =

y

xy
=

1

x
.

We also have
d

dx
g(x) =

d

dx
(lnx + ln y) =

1

x
+ 0 =

1

x
.

Since f and g have the same derivatives on the interval (0,∞), therefore they differ by a
constant. But taking x = 1, f(1) = ln y and g(1) = ln 1 + ln y = ln y, so the constant they
differ by is 0, that is to say, f = g. q.e.d.

Theorem 6. The logarithm of a quotient of two positive numbers is the difference of their
logarithms, that is, lnx/y = lnx− ln y.

Proof. Although the same kind of proof could be given as in the preceding theorem, we
can also derive this from the preceding theorem. Let z = x/y so that x = yz. Since
ln yz = ln y + ln z, therefore ln yz − ln y = ln z, that is, lnx− ln y = lnx/y. q.e.d.
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Theorem 7. The logarithm of the reciprocal of a positive number is the negation of the
logarithm of that number, that is, ln 1/y = − ln y.

Proof. Using the preceding theorem, ln 1/y = ln 1− ln y = 0− ln y = − ln y. q.e.d.

These theorems can be proved in a more geometric manner using properties of transfor-
mations of area.

The graph of the hyperbola y = 1/x has a special property. If you compress the plane
vertically by a factor of c, then expand the plane horizontally by that same factor, then the
hyperbola falls on itself. Start with the point (x, 1/x), compress vertically to get (x, 1/cx),
then expand horizontally to get (cx, 1/cx), another point on the graph.

y = 1/x

(c = 3)

q
a

q
b

q
ac

q
bc

The integral

∫ b

a

1

x
dx describes the area A of the region under the hyperbola above the

interval [a, b]. That area was studied by Gregory of Saint-Vincent in 1647. He proved that
the area above the interval [a, b] was the same as the area above the interval [ca, cb] for any
positive constant c. One argument that he gave used rectangular approximations.

When the plane is compressed vertically by a factor of c, that region is compressed into
a region of area A/c. When it’s expanded horizontally, the resulting region expands back to
an area A, but that region is the area under the hyperbola above the interval [ca, cb] which

has area

∫ cb

ca

1

x
dx. Thus ∫ b

a

1

x
dx =

∫ cb

ca

1

x
dx.

That translates into the following identity for logarithms

ln b− ln a = ln cb− ln ca.

Setting a = 1, b = x, and c = y yields the identity lnxy = lnx + ln y, while setting a = y,
b = x, and c = 1/y yields the identity ln x/y = lnx− ln y.

Theorem 8. If n is an integer and x a positive number then lnxn = n lnx.
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Proof. First, consider the case when n = 0. Then lnxn = ln 1 = 0 = 0 lnx = n lnx.
Next, consider the case when n is a positive integer. Then n is the sum of n 1’s, n =

1 + 1 + · · ·+ 1. Therefore, xn is the product of n x’s, xn = x · x · · ·x, so

lnxn = ln(x · x · · ·x) = lnx + lnx + · · ·+ lnx = n lnx.

Finally, consider the case when n is a negative integer. Then lnxn = ln((1/x)−n), and
since −n is a positive integer, we have by the previous case that ln((1/x)−n) = −n ln(1/x),
which equals n lnx. q.e.d.

Theorem 9. If n is an integer and x a positive number then ln n
√
x =

1

n
lnx.

Proof. Since n ln n
√
x = ln(( n

√
x)n) = ln x, divide by n to get the desired identity. q.e.d.

Theorem 10. If y is an rational number and x a positive number then lnxy = y lnx.

Proof. Let y be the rational number m/n with n positive. Then

lnxy = lnxm/n = ln( n
√
x)m = m ln n

√
x =

m

n
lnx = y lnx.

q.e.d.

Theorem 11. The function ln x is an increasing one-to-one function on its domain (0,∞).

Proof. Since its derivative 1/x is positive, therefore it’s increasing. Every increasing function
on an interval is one-to-one. q.e.d.

Theorem 12. The graph y = lnx of the function lnx is concave downward.

Proof. The second derivative of lnx is −1/x2 which is negative, therefore its graph is concave
downward. q.e.d.

Theorem 13. The range of the function ln x includes all real numbers.

Proof. Let b be any number greater than 1, then c = ln b > 0. Then multiples nc approach
∞ as n increases to ∞. But nc = n ln b = ln bn, so the values of the function lnx grow
arbitrarily large. Also, −nc = ln b−n approaches −∞.

Since the function lnx is a continuous function, it takes on all intermediate values as well.
Therefore its range includes all real numbers. q.e.d.

Theorem 14. lim
x→∞

lnx =∞, and lim
x→0+

lnx = −∞.

Proof. Those limits hold since the function ln x is an increasing function with domain (0,∞)
whose range includes all real numbers. q.e.d.

We now have enough qualitative information to sketch a graph of y = lnx.
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The number e.

Definition 15. As the function ln x is a one-to-one function with domain (0,∞) and range
(−∞,∞), there is exactly one number whose logarithm equals 1, it is denoted e. Thus
ln e = 1.

In other words, e is the number such that the area equals 1 under the hyperbola y = 1/x
and above the interval [1, e].

We can estimate the value of e from its definition.

Theorem 16. ln 2 is less than 1, while ln 3 is greater than 1. Therefore, e lies between 2 and
3.

Proof. To show that ln 2 is less than 1, note that the region under the hyperbola y = 1/x
over the interval [1, 2] lies inside a square on that interval. Since that square has area 1, that
region, whose area is ln 2 is less than 1.

To show that ln 3 is greater than 1, use a lower rectangular estimate of the area under the
hyperbola over [1, 3] using a uniform partition into 8 parts. The six rectangles have heights
4
5
, 4
6
, 4
7
, . . . , 4

12
, and each has a width of 1

4
. The lower estimate is, therefore, 1

5
+ 1

6
+ · · · + 1

12
,

which is about 1.127, greater than 1.
Since ln 2 < 1 < ln 3, and lnx is an increasing function, therefore e, the number whose

logarithms is 1, lies between 2 and 3. q.e.d.

The definition is not the fastest way to approximate e. One property of e that quickly
estimates e is an expression for e as the infinite sum (also called a series)

e = 2 + 1
2!

+ 1
3!

+ · · ·+ 1
n!

+ · · · .
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(Here, n! is the product of the integers from 1 through n.) We won’t prove that here. You can
find good approximations of e by truncating this infinite sum to a finite sum. For example,
2 + 1

2!
+ 1

3!
+ 1

4!
+ 1

5!
+ 1

6!
= 2.71806 which is correct to 3 decimal places.

Another property of e we won’t prove here, but is important in many applications is that

lim
n→∞

(
1 +

1

n

)n

= e.

We’ll prove that later.

The exponential function and its properties.

Definition 17. The exponential function expx is the function inverse to the logarithm func-
tion ln x:

y = expx if and only if x = ln y.

It’s domain includes all real numbers, and its range is the interval (0,∞).

1

2

3

4

5

−4 −3 −2 −1 0 1 2

y = expx

Theorem 18. For each positive number x, exp(lnx) = x, and for each number x, ln(expx) =
x. In particular, exp 0 = 1, and exp 1 = e.

Proof. The first two identities follow directly from the definition, and the last two are par-
ticular instances of the first when x = 1 and x = e, respectively. q.e.d.

Later, after a few theorems, we’ll define for any positive number a the exponential ax

as exp(x ln a), so, in particular, ex = exp(x ln e) = expx. After that we’ll generally use the
notation ex in preference to expx.
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Theorem 19. The exponential function expx is differentiable and continuous. Its derivative

is itself,
d

dx
expx = expx. It is an increasing function, and its graph y = expx is concave

upward everywhere.

Proof. Begin with the identity x = ln expx. Take the derivative with respect to x to conclude

by the chain rule that 1 =
1

expx

d

dx
expx. Therefore exp x =

d

dx
expx.

Since its derivative, which expx, is positive, expx is an increasing function. Since its
second derivative, which is also expx, is positive, its graph is concave upward. q.e.d.

Theorem 20. The exponential of a sum is the product of the exponentials, that is, exp(a+
b) = exp a exp b.

Proof. Let c = exp a and d = exp b. Since ln cd = ln c + ln d, therefore exp ln cd = exp(ln c +
ln d). But cd = exp ln cd, so cd = exp(ln c + ln d). Also, a = ln c and b = ln d. Thus
exp a exp b = exp(a + b). q.e.d.

Theorem 21. The exponential of a difference is the quotient of the exponentials, that is,

exp(a− b) =
exp a

exp b
.

Proof. Substitute a− b for a in the identity exp(a + b) = exp a exp b to get exp a = exp(a−
b) exp b. Then divide by exp b to get the desired identity. q.e.d.

Theorem 22. The exponential of a negation is the reciprocal of the exponential, that is,

exp(−b) =
1

exp b
.

Proof. Set a = 0 in the preceding identity. q.e.d.

General exponentiation. Up until now, exponentiation has only been defined when the
exponent is a rational number. If y = m/n, then xy means ( n

√
x)y. We’ll extend exponentia-

tion to irrational exponents by defining, for x positive, xy = exp(y lnx). But before we can
extend the definition that way, we have to prove that this agrees with exponentiation when
y is a rational number, that is, we need to prove that xy = exp(y lnx) when x is positive and
y is a rational number. The next few theorems lead to that result.

Theorem 23. For any integer n and any number x, expnx = (expx)n.

Proof. In the case when n = 0, exp 0x = exp 0 = 1 = 10 = (expx)0.
In the case when n is positive, it is the sum of n 1s, n = 1 + 1 + · · · + 1. So expnx =

exp(1 + 1 + · · ·+ 1)x = exp(x + x + · · ·+ x) = exp x expx · · · expx = (expx)n.
In the case when n is negative, expnx = exp(−(−n)x) = 1/ exp(−n)x, which, by the

preceding case, equals 1/(x−n) = xn. q.e.d.

Theorem 24. For any positive integer n and any number x, exp x/n = n
√

expx.

Proof. By the preceding theorem
(

exp
x

n

)n
= expn

(x
n

)
= expn. Taking nth roots we get

the desired identity. q.e.d.
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Theorem 25. For any rational number y and any number x, exp xy = (expx)y.

Proof. Let y be the rational number m/n with n positive. Then

expxy = exp
mx

n
=
(

exp
x

n

)m
= ( n
√
x)m = xm/n = xy.

q.e.d.

Theorem 26. When x is positive and y is a rational number, xy = exp(y lnx).

Proof. Let a = ln x so that x = exp a. Then, by the previous theorem, xy = (exp a)y =
exp ay = exp(y lnx). q.e.d.

Now that we have that theorem, we can extend exponentiation with arbitrary powers.

Definition 27. Exponentiation for a positive base b and any power a is defined by

ba = exp(a ln b).

Theorem 28. expx = ex

Proof. ex = exp(x ln e) = exp x. q.e.d.

After this, we’ll generally use the notation ex rather than exp x, except when the exponent
x is a complicated expression that would be difficult to read as a small exponent.

All the usual properties of powers hold when the exponents are irrational, and their proofs
follow directly from the definition and the preceding theorems. We’ll leave out their proofs.
In each of these identities, it is assumed that the bases of exponentiation are all positive
numbers.

x0 = 1 x1 = x 1x = 1

x−1 =
1

x
x1/n = n

√
x

xy+z = xyxz xy−z =
xy

xz
x−z =

1

xz

(xy)z = xzyz (xy)z = xyz

xy = ey lnx lnxy = y lnx

There are a few properties of general exponentiation that should be proved as they relate
to differentiation and integration.

First, we’ll state and prove the general power rules for differentiation and integration.

Theorem 29. The power rule for differentiation
d

dx
xa = axa−1 holds for all numbers a.

Proof.
d

dx
xa =

d

dx
exp(a lnx) = exp(a lnx)

d

dx
(a lnx) = xa a

x
= axa−1 q.e.d.

Theorem 30. The power rule for integration holds when a 6= 1∫
xa dx =

xa+1

a + 1
+ C.
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Proof. By the preceding theorem, the derivative of xa+1/(a + 1) equals the integrand xa.
q.e.d.

Next, we’ll state and prove the general exponential rules for differentiation and integration.
Note that you use the power rules when the powers are constants, but you use the exponential
rules when the bases are constant. When both the base and exponent are variable, rewriting
ba as ea ln b should work. Also, the method of logarithmic differentiation will work in finding
derivatives of such functions.

Theorem 31. The exponential rule for differentiation is

d

dx
ax = ax ln a.

Proof.
d

dx
ax =

d

dx
ex ln a = ex ln a ln a = ax ln a. q.e.d.

Theorem 32. The exponential rule for integration is∫
ax dx =

ax

ln a
+ C.

Proof. By the preceding theorem, the derivative of
ax

ln a
equals the integrand ax. q.e.d.

General logarithms. When calculus is involved, natural logarithms are usually used. For
special purposes, other logarithms are used, mainly logarithms with base 10 or with base 2.

Definition 33. If b is a positive number other than 1, then the logarithm with base b is
defined by

logb x =
lnx

ln b
.

Theorem 34. loge x = lnx.

Proof. loge x =
lnx

ln e
= lnx. q.e.d.

Theorem 35. The function logb x has domain (0,∞) and range all numbers. It is inverse to
the exponential function bx.

Proof. As it’s just scaled by a factor of ln b, it will have the same domain, and its range will
still be all real numbers.

It’s inverse to the exponential function since y = logb x means y =
lnx

ln b
, which is equivalent

to y ln b = lnx. Since the function lnx is inverse to the function expx, that last condition is
equivalent to x = exp(y ln b), but that says x = by. Thus, the function logb x is inverse to the
function bx. q.e.d.

All the usual properties of general logarithms follow from the definition and previous

theorems. In particular, the change of base formula holds, logc a =
logb a

logb c
.

The derivative of the function logb x is easy to compute.
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Theorem 36.
d

dx
logb x =

1

x ln b
=

logb e

x
.

Proof.
d

dx
logb x =

d

dx

lnx

ln b
=

1

x ln b
. A special case of the change of base formula above,

namely a = b shows that logc a =
1

loga c
, which implies the second equality in the statement

of the theorem. q.e.d.

Math 121 Home Page at
http://math.clarku.edu/~ma121/
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