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Rational functions. Recall that a rational function is a quotient of two polynomials such
as

f(x)

g(x)
=

3x5 + x3 + 16x2 − 42x− 60

x3 + x2 − 4x− 4
.

The method of partial fractions can be used to integrate rational functions. It’s a fairly
complicated method and applying it takes time, but it works!

We know how to integrate a few simple rational functions. This method will take a
complicated rational function like the example above and express it as a sum of the simple
rational functions we can already integrate, like these:∫
dx

x
= ln |x|+C,

∫
dx

xn
=

−1

(n− 1)xn−1
+C for n > 1, and

∫
dx

1 + x2
= arctanx+C

These can be generalized to these three more useful identities∫
dx

ax+ b
=

1

a
ln |ax+ b|+ C∫

dx

(ax+ b)n
=

−1

a(n− 1)(ax+ b)n−1
+ C for n > 1∫

dx

a2x2 + b2
=

1

ab
arctan

ax

b
+ C

Using the method called completing the square, that last equation can be further generalized
to integrate the reciprocal of any irreducible quadratic function.

Results from algebra. This method depends on some algebraic facts about polynomials,
namely, the Fundamental Theorem of Algebra and the decomposition of rational functions
into partial fractions. The term “partial fractions” just means simpler rational functions.

The FTA. The Fundamental Theorem of Algebra (FTA) concerns factoring a polynomial
into linear factors. An example of such a factoring is x2−8x+15 = (x−5)(x−3). It can also
be stated in terms of roots of the polynomial. For the example, the quadratic polynomial
x2 − 8x+ 15 has two roots, x = 5, 3.

The FTA states that over the complex numbers, every nth degree polynomial can be
factored into n linear factors. In terms of roots, it says that every nth degree polynomial
has exactly n roots, but the roots may be complex numbers, and multiplicities have to be
counted.

For an example of counting multiplicities, the cubic polynomial x3 + x2 − x − 1 factors
into linear factors as (x + 1)2(x − 1). The factor x + 1 appears twice. Its roots are +1 and
−1, but −1 has multiplicity 2, i.e, it’s a double root.
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For an example of complex roots, the polynomial x2 + 1 factors as (x+ i)(x− i), and has
two roots ±i. Here, i is

√
−1, the imaginary unit.

We don’t have to get involved with complex numbers. Instead, we’ll take a form of the
FTA that only mentions real numbers.

In that form, the FTA states that every nth degree polynomial can be factored over the
real numbers into linear factors and irreducible quadratic factors. An irreducible quadratic
polynomial is one like x2 + 1 that has no real roots. You can tell if a quadratic polynomial
ax2 + bx + c is irreducible by looking at its discriminant b2 − 4ac. If the discriminant is
positive, then the polynomial has two real roots and it factors; if the discriminant is 0, then
the polynomial has a double real root and it factors as the square a linear polynomial; but if
the discriminant is negative, then it has two complex roots and it doesn’t factor, that is, it’s
irreducible.

The FTA is used for partial fractions in order to factor the denominator of the rational
function.

Decomposition of rational functions into partial fractions. There are a few steps
to accomplish this decomposition. First divide the denominator into the numerator, then
factor the denominator, next write the rational function as a sum of partial fractions with
undetermined constants, and finally determine those constants.

Example 1. Step 1. The first step in the decomposition is to reduce the problem to the
case where the numerator has a lower degree than the denominator. Let’s take our example
f(x)

g(x)
=

3x5 + x3 + 16x2 − 42x− 60

x3 + x2 − 4x− 4
. You can use long division to divide g(x) into f(x). In

this case, divide x3 + x2 − 4x− 4 into 3x5 + x3 − 42x− 60. You’ll get 3x2 − 3x + 16 with a
remainder of 10x+ 4. Therefore,

3x5 + x3 + 16x2 − 42x− 60

x3 + x2 − 4x− 4
= 3x2 − 3x+ 16 +

10x+ 4

x3 + x2 − 4x− 4
.

Step 2. Next factor the denominator. By the FTA we know there is a factorization.
Finding the factorization for high degree polynomials is difficult, but in this example, we can
do it.

x3 + x2 − 4x− 4 = (x− 4)(x− 1)(x+ 1)

Step 3. Now comes the theory for the decomposition. It says that any rational function
whose numerator has a lower degree than the denominator can be written as a sum of simpler
rational functions, the “partial fractions”, where each partial fraction has as denominator a
factor of the original denominator or a power of that factor if that factor appears with
multiplicity greater than 1. The numerators of the partial fractions have lower degrees than
the denominators. For our example, this says that

10x+ 4

x3 + x2 − 4x− 4
=

A

x− 4
+

B

x− 1
+

C

x+ 1

where, since the denominators have degree 1, the numerators have to have degree 0, that is,
A, B, and C are constants.

Step 4. Determine the numerators. Clear the denominators from the equation by multi-
plying both sides by x3 + x2 − 4x− 4 = (x− 4)(x− 1)(x+ 1). You’ll get

10x+ 4 = A(x− 1)(x+ 1) +B(x− 4)(x+ 1) + C(x− 4)(x− 1).
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There are various ways to continue from here to determine A, B, and C. Since the equation
is true for all values of x, one way to continue is to set x to convenient values, and the most
convenient values are the roots of the polynomial: 4, 1, and −1.

If you set x = 4, then the equation says 44 = 15A, so A = 44
15

.
If you set x = 1, then the equation says 14 = −6B, so B = −7

3
.

And if you set x = −1, then the equation says −6 = 10C, so C = −3
5
.

Therefore,
10x+ 4

x3 + x2 − 4x− 4
=

44/15

x− 4
+
−7/3

x− 1
+
−3/5

x+ 1
.

Complete the integration. Now that the complicated rational function has been writ-
ten as a sum of simpler partial fractions, we can integrate it.∫

3x5 + x3 + 16x2 − 42x− 60

x3 + x2 − 4x− 4
dx

=

∫ (
3x2 − 3x+ 16 +

10x+ 4

x3 + x2 − 4x− 4

)
dx

=

∫ (
3x2 − 3x+ 16 +

44/15

x− 4
+
−7/3

x− 1
+
−3/5

x+ 1

)
dx

= x3 − 3

2
x2 + 16x+

44

15
ln |x− 4| − 7

3
ln |x− 1| − 3

5
ln |x+ 1|+ C

This example was chosen to show the method, but there can be complications. One
complication occurs when there is a multiple root. A more difficult complication occurs when
one of the factors is an irreducible quadratic polynomial. That eventually leads to an answer
involving arctangents.

We’ll look at a couple more examples to see some of these complications.

Example 2.

∫
2x4 dx

x3 + x2 − x− 1
. First divide the denominator into to the numerator to see

that
2x4

x3 + x2 − x− 1
= 2x− 2 +

4x2 + 1

x3 + x2 − x− 1
.

Next, the denominator factors as x3 + x2 − x− 1 = (x + 1)2(x− 1). The repeated factor of
(x+ 1)2 will give us two terms in the partial fraction decomposition as follows.

4x2 + 1

x3 + x2 − x− 1
=

A

x+ 1
+

B

(x+ 1)2
+

C

x− 1

Determine the constants A, B, and C. First clear the denominators.

4x2 + 1 = A(x+ 1)(x− 1) +B(x− 1) + C(x+ 1)2

The two roots ±1 give us two convenient values of x to determine two of these constants.
Setting x = 1, we get 5 = 4C, so C = 5

4
.

Setting x = −1, we get 5 = −2B, so B = −5
2
.
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There are no more roots, but we can set x to any other value, say x = 0, and we find
1 = −A−B + C, and since we know B and C, therefore A = 11

4
. Thus,

2x4 dx

x3 + x2 − x− 1
= 2x− 2 +

11/4

x+ 1
+
−5/2

(x+ 1)2
+

5/4

x− 1
.

We can now integrate the original rational function.∫
2x4 dx

x3 + x2 − x− 1
=

∫ (
2x− 2 +

11/4

x+ 1
+
−5/2

(x+ 1)2
+

5/4

x− 1

)
dx

= x2 − 2x+
11

4
ln |x+ 1|+ 5/2

2(x+ 1)
+

5

4
ln |x− 1|+ C

Example 3.

∫
x2 + 2x+ 5

(x2 + 1)(x− 3)
dx. The numerator already has a smaller degree than the

denominator, so we can skip that step, and the denominator is already factored as the prod-
uct of the irreducible quadratic x2 + 1 and the linear factor x − 3. The partial fraction
decomposition has two parts, the first with denominator x2 + 1, but its numerator won’t be
a constant but an undetermined linear polynomial Ax+B.

x2 + 2x+ 5

(x2 + 1)(x− 3)
=
Ax+B

x2 + 1
+

C

x− 3

Now to determine A, B, and C. We’ll clear the denominators.

x2 + 2x+ 5 = (Ax+B)(x− 3) + C(x2 + 1)

Although we could use the root x = 3 as a convenient value and determine what C is, we’d
still have to find A and B somehow. Let’s use another method from algebra. Rewrite the
right hand side of the equation as

x2 + 2x+ 5 = (A+ C)x2 + (−3A+B)x+ (−3B + C).

The only way two polynomials can be equal is if they have the same coefficients. That gives
us three simultaneous linear equations in three unknowns to solve.

1 = A+ C
2 = −3A+B
5 = −3B + C

You can solve these equations the unknowns A, B, and C to find that A = 2, B = −1, and
C = 2. Now we can continue the integration.∫

x2 + 2x+ 5

(x2 + 1)(x− 3)
dx =

∫
2x− 1

x2 + 1
dx+

∫
2

x− 3
dx

The second integral is just 2 ln |x−3|. We can split the first integral into two parts. The first
part is ∫

2x

x2 + 1
dx = ln |x2 + 1|
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which you can guess or find with the help of a substitution u = x2 + 1, while the second part
is ∫

−1

x2 + 1
dx = − arctanx.

Thus, our original integral evaluates as

ln |x2 + 1| − arctanx+ 2 ln |x− 3|+ C.

See the text for some examples that are more complicated than these.

Weierstrass’s universal t-substitution. This is a substitution that converts and any
function built out of trig functions and the four arithmetic operations into a rational function
like the ones we just looked at.

Suppose we have an integral of such a function, say

∫
2 + sin θ

3 + cos θ
dθ. Weierstrass’s t sub-

stitution makes t = tan θ/2. The full set of formulas for this substitution is

t = tan
θ

2
sin θ =

2t

1 + t2

θ = 2 arctan t cos θ =
1− t2

1 + t2

dθ =
2

1 + t2
dt tan θ =

2t

1− t2

Our example integral then becomes

∫ 2 +
2t

1 + t2

3 +
1− t2

1 + t2

2

1 + t2
dt =

∫
2(t2 + t+ 1)

(t2 + 2)(t2 + 1)
dt

The methods described above finish off this integral.

=

∫
1− t
t2 + 2

dt+

∫
t

t2 + 1
dt =

1√
2

arctan
t√
2
− 1

2
ln(t2 + 2) + 1

2
ln(t2 + 1) + C

where t = tan θ/2.

Math 121 Home Page at http://math.clarku.edu/~ma121/
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