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Some series converge, some diverge.

Geometric series. We’ve already looked at these. We know when a geometric series

converges and what it converges to. A geometric series
∞∑
n=0

arn converges when its ratio r lies

in the interval (−1, 1), and, when it does, it converges to the sum
a

1− r
.

The harmonic series. The standard harmonic series
∞∑
n=1

1

n
diverges to ∞. Even though

its terms 1, 1
2
, 1

3
, . . . approach 0, the partial sums Sn approach infinity, so the series diverges.

The main questions for a series.

Question 1: given a series does it converge or diverge?
Question 2: if it converges, what does it converge to?

There are several tests that help with the first question and we’ll look at those now.

The term test. The only series that can converge are those whose terms approach 0. That

is, if
∞∑
k=1

ak converges, then ak → 0.

Here’s why. If the series converges, then the limit of the sequence of its partial sums

approaches the sum S, that is, Sn → S where Sn is the nth partial sum Sn =
n∑

k=1

ak. Then

lim
n→∞

an = lim
n→∞

(Sn − Sn−1) = lim
n→∞

Sn − lim
n→∞

Sn−1 = S − S = 0.

The contrapositive of that statement gives a test which can tell us that some series diverge.

Theorem 1 (The term test). If the terms of the series don’t converge to 0, then the series
diverges.

Note, however, the terms converging to 0 doesn’t imply the series converges, as the har-
monic series gives a counterexample to that.

The term test can be used to show that the following series don’t converge∑ n

n+ 1

∑ n!

n2

∑
(−1)n

n

2n+ 1
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because their terms do not approach 0.
The rest of the tests in this note deal with positive series, that is, a series none of whose

terms are negative. Note that the only way a positive series can diverge is if it diverges to
infinity, that is, its partial sums approach infinity.

The comparison test. Essentially, a positive series with smaller terms sums to a smaller
number than a series with larger terms.

Suppose that
∞∑
k=1

ak and
∞∑
k=1

bk are two positive series and every term of the first is less

than or equal to the corresponding term of the second, that is, an ≤ bn for all n. If that’s the

case, we’ll say the second series dominates the first series. Then each partial sum Sn =
n∑

k=1

ak

of the first series is less than or equal to the corresponding partial sum Tn =
n∑

k=1

bk of the

second series. Furthermore, since these are both positive series, so both sequences {Sn}∞n=1

and {Tn}∞n=1 of partial sums are increasing sequences.
Suppose the second sequence converges to a number T , that is, Tn → T . Then T bounds

the sequence {Tn}∞n=1, so it also bounds the smaller sequence {Sn}∞n=1. Since an increasing
bounded sequence has a limit, therefore {Sn}∞n=1 has a limit, S, and S ≤ T .

Thus, we’ve proven the following theorem. The second statement is the contrapositive of
the first, so it’s also true.

Theorem 2 (The comparison test). Suppose that one positive series is dominated by another.
If the second converges, then so does the first. If the first diverges to infinity, then so does
the second.

You can think of this theorem as simply saying that

If an ≤ bn for each n, then
∑

an ≤
∑

bn

Example 3. Any series dominated by a positive convergent geometric series converges. For

instance, we’ll show
∞∑
n=4

1

n!
converges since it’s dominated by the convergent geometric series

∞∑
n=4

1

2n
. All we need to do is show that

1

n!
≤ 1

2n
for large n. But for n ≥ 4, 2n ≤ n!. Thus

∞∑
n=4

1

n!
is dominated by a convergent geometric series, and, so, it’s also a convergent series.

Since the series
∞∑
n=0

1

n!
only has finitely many more terms, it also converges.

Note that whether a series converges or diverges doesn’t at all depend on the first few
terms. It only depends the rest of them, the “tail” of the series. For that reason, when
we’re only interested in convergence, we’ll leave usually abbreviate our sigma notation and

say
∑ 1

n!
converges.
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Example 4. Since
1

n
<

1

lnn
(for n ≥ 2), and

∑ 1

n
diverges, so does

∑ 1

lnn
.

The integral test. For many positive series, the question of convergence for the series can
be replaced by a question of convergence for a closely related integral. We’ll illustrate this
with an example first.

Example 5. Consider the series

1 + 1
4

+ 1
9

+ · · ·+ 1
n2 + · · · =

∞∑
n=1

1

n2
.

We can’t use the comparison test on this since we don’t yet know any divergent series that it
dominates, and we don’t know any convergent series that it dominates. But we can extend

1/n2 to a nice continuous function f(x) = 1/x2 and look at the integral

∫ ∞
1

1

x2
dx.

We’ll draw a figure in class that shows the following inequality

∞∑
n=2

1

n2
<

∫ ∞
1

1

x2
dx <

∞∑
n=1

1

n2
.

The first sum is a rectangular underestimate for the integral, and the second sum is an
overestimate. Thus, our series sums to almost the integral, the error being at most the value
of the first term. We can easily evaluate that improper integral.∫ ∞

1

1

x2
dx = −1

x

∣∣∣∞
1

= 1

Since the integral converges, so does the series. We also get crude bounds on the sum of the
series, namely, it sums to a value between 1 and 2.

The exact sum of this series is difficult to find. We won’t find it in this course, but it
turns out to be π2/6.

We can generalize this example to prove the following theorem. The only special property
of the function f(x) that we needed was that it was a decreasing function.

Theorem 6 (The integral test). If f is a decreasing positive function defined on [1,∞), then

the series
∞∑
n=1

f(n) converges if and only if the integral

∫ ∞
1

f(x) dx converges. In that case,

difference between the sum of the series and the value of the integral is at most f(1).

It’s useful to have a notation to indicate that two series or integrals either both converge
or both diverge. We’ll use a tilde, ∼, for that. Then the integral test can be summarized as

If f is positive and decreasing then
∑

f(n) ∼
∫
f(x) dx
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p-series Series of the form
∑ 1

np
, where p is a constant power, are called p-series. When

p = 1, the p-series is the harmonic series which we know diverges. When p = 2, we have
the convergent series mentioned in the example above. By use of the integral test, you can
determine which p-series converge.

Theorem 7 (p-series). A p-series
∑ 1

np
converges if and only if p > 1.

Proof. If p ≤ 1, the series diverges by comparing it with the harmonic series which we
already know diverges. Now suppose that p > 1. The function f(x) = 1/xp is a decreasing
function, so to determine the convergence of the series we’ll determine the convergence of the
corresponding integral. ∫ ∞

1

1

xp
=

−1

(p− 1)xp−1

∣∣∣∞
1

= −0 +
1

p− 1

Since the integral converges, so does the series. q.e.d.

Some example divergent p-series are
∑ 1

n
and

∑ 1√
n

. Some convergent ones are
∑ 1

n2
,∑ 1

n
√
n

, and
∑ 1

n1.001
.

The limit comparison test. This test is an improvement on the comparison test. It
incorporates the fact that a series converges if and only if a constant multiple of it converges
(provided that constant is not 0, of course). So long as you can compare a multiple of one
series to another, that’s enough to do a comparison.

Theorem 8 (Limit comparison test). Given two positive series
∑
an and

∑
bn where the

ratio of their terms an/bn approaches a positive number, then they either both converge or
diverge, that is,

∑
an ∼

∑
bn.

Proof. Suppose that an/bn → L, a positive number. Let ε = L/2. Then for large n, |an/bn−
L| < L/2. Hence, L

2
bn ≤ an ≤ 3L

2
bn. Now, if

∑
an converges, then by the comparison test, so

does
∑

L
2
bn converge, hence

∑
bn converges. On the other hand, if

∑
bn, converges, so does∑

3L
2
bn, and again by the comparison test,

∑
an converges. q.e.d.

One of the applications of the limit comparison test is that it allows us to ignore small

terms. Consider the series
∑

an =
∑ 3n2 + 2n+ 1

n3 + 1
. We can replace this series by

∑
bn =∑ n2

n3
=
∑ 1

n
because

an
bn

=
3n2 + 2n+ 1

n3 + 1

/n2

n3
=

3n2 + 2n+ 1

n2

n3

n3 + 1
→ 3 · 1 = 3

But
∑
bn is the harmonic series, which diverges. Therefore our original series

∑
an also

diverges.
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The root test. The root test doesn’t have a lot of applications, but I’m including it here
since it’s one of the standard tests. For the root test, you look at the limit of the nth root of
the nth term.

Theorem 9 (The root test). If lim
n→∞

a1/nn = L, and if L < 1 then the series converges, but if

L > 1 the series diverges.

For the root test, if L = 1, then the test is inconclusive, so you have to use some other
test.

Example 10. The root test is especially useful when the nth term already has a nth power

in it. Consider the series
∑ 1

(lnn)n
. Here, a1/nn =

(
1

(lnn)n

)1/n

=
1

lnn
→ 0. So that series

converges.

Here’s the proof for the root test in the case that L < 1. The case L > 1 is analogous.
We’ll show

∑
an converges by comparing it to a larger convergent geometric series. Let r be

a number between L and 1. Since a
1/n
n → L, therefore for sufficiently large n, a

1/n
n < r, so

an < rn. But the geometric series
∑
rn converges, so

∑
an also converges. q.e.d.

The ratio test. We won’t use the root test a lot, but the ratio test is very important, and
we’ll use a version of it soon on every power series we analyze. The statement of it is similar

to that of the root test. For the ratio test, you look at the limit of the ratio
an+1

an
of adjacent

terms.

Theorem 11 (The ratio test). If lim
n→∞

ak+1

ak
= L, and if L < 1 then the series converges, but

if L > 1 the series diverges.

For the ratio test, as it was for the root test, if L = 1, then the test is inconclusive, so
you have to use some other test.

Example 12. Consider the series
∑ 7n

n!
. The nth term is an =

7n

n!
so the next term is

an+1 =
7n+1

(n+ 1)!
. For this ratio test, we’ll examine the ratio

an+1

an
and find its limit.

an+1

/
an =

7n+1

(n+ 1)!

/7n

n!
=

7n+1

7n

n!

(n+ 1)!
=

7

n+ 1
→ 0.

Since the limit L = 0 is less than 1, this series converges.

The proof of the first case of the ratio test depends on comparing it to a larger convergent
geometric series like we did for the root test. Again, we’ll do just the case L < 1 here since
the case L > 1 has an analogous proof.

Let r be a number between L and 1. Since
an+1

an
, therefore for sufficiently large n, say

n ≥ N , we have
an+1

an
< r, and so an+1 < anr. A quick inductive argument shows that

an < aNr
n−N . That says the tail of our series is dominated by a convergent geometric

series,
∞∑

n=N

an <

∞∑
n=N

aNr
n−N . Therefore, by the comparison test, the original series also

converges. q.e.d.
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What test to use? We’ve got several example series and several convergence tests. When
you’re looking at a positive series, what’s the best way to determine whether it converges or
diverges?

This is more of an art than a science, that is, sometimes you have to try several things in
order to find the answer. Here are a few pointers you can use.

If you recognize it as a geometric series
∑

arn, you know if it converges or not. It

converges when the ratio r is in the interval (−1, 1).

If it’s a p-series
∑ 1

np
, you know if it converges or not. It converges when p > 1.

If the terms don’t approach 0, you know it diverges.
If you can dominate a known divergent series with the series, it diverges. If you know a

convergent series that dominates it, it converges.
The limit comparison test can be used to simplify the problem of convergence because it

allows you to ignore small terms.
If it’s got factorials or powers, you can usually use the ratio test. The root test also works

on many of these.
The integral test works on many series, but you’ll have to evaluate or bound the integral

to make the determination.

Math 121 Home Page at http://math.clarku.edu/~ma121/
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