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Introduction to power series. One of the main purposes of our study of series is to
understand power series. A power series is like a polynomial of infinite degree. For example,

dat=ldatat+ota" 4o
n=0

is a power series. We'll look at this one in a moment.

Power series have a lot of properties that polynomials have, and that makes them easy to
work with. Also, they’re general enough to represent lots of important functions like e*, In x,
sinz, and cos .

Let’s look at 1 +x + 2% + -+ + 2" + ---. For a fixed value of z, this is just a geometric

series, and we know that it sums to when z € (—1,1). For values of = outside the

interval (—1, 1), the series diverges. Thus,

1
1—2z

=l4+z+a2*+-+2"+--- forze(-1,1).

The interval where a power series converges is called the interval of convergence.

Since we know the series for , we can use it to find power series for some other

-
functions. For instance, if we substitute —z for  we get

=l—ao+2>—- -+ (=1)"2"+--- forxze(-1,1).

1+z

If, instead, we substitute 2x for = we get

1_2x:1+2x+4x2—|—---+2"x”+--- for z € (-3, 3),
and —a? for x gives
1
1+x2:1—x2+x4—--~+(—1)”x2"+~- for x € (—1,1).

Two of the important properties of polynomials that are shared with power series is that
they can be differentiated and integrated term by term. That is, if

f(z) =ao+ a1+ agx® + -+ + apa” + - -
for x in some interval, then, differentiating,

f'(x) = ay + 2ax + -+ + na,a" -
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for x in the same interval; also, integrating,

anrl
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again for x in that interval. Integration works not only for indefinite integrals (as just written),
but also for definite integrals.

Thus, integrating the series for between 0 and x, we get
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We get the power series for arctan x by integrating the series for iy
x
2> 2l
arctanr =0r— —+ — — —+---  forz e (-1,1).
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We’ll need more theory to develop the following power series for the three important
functions e®, cosx, and sinz. We’ll do that next time. It leads to the important results that

for all x,
2 3 4 5

e =1+ 2z + 4 + L 4+ L + 4 4
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cosr = 1 —

[\

sinx = x - xg_? + gg_j
Note that the terms of the cosx series are the even terms of the e” series, but the cos z series
alternates sign, and the terms of the sin x series are the odd terms of the e* series, and, again,

the sin x series alternates sign.

Power series centered at numbers other than 0. The power series mentioned above
can be translated to other numbers if we make a linear substitution.
For example, take the power series for In(1 + )

> n 2 3

(1 +2) = (~1) ;:x—?+§—~~+(—1)"+1%+~' for z € (—1,1)
n=1

and substitute u =1+ x, so x =u — 1. Then

o0

Inu— Z(_l)n—H (u ;1)71 _ (u—l)—(u _2 1)2+(u _3 1)3__ . '—I-(—l)n—Hw*“ .. for u € (0,2).

n=1

This new series expresses Inu as a series of powers of u — 1. This power series is said to be
centered at 1. Note that the interval of convergence is translated by 1.
For another example, take our first power series
1

1—:1+x+x2+---+x"+--~ for x € (—1,1)
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and substitute u = x — 1, so r = u + 1. Then we find

7:1+(u+1)+(u+1)2+-~-+(u+1)”+--~ for u € (—2,0).

This series is centered at —1.

For the most part, we’ll use power series centered at 0, but sometimes power series centered
at other numbers are useful.

In summary, a power series centered at a number a is of the form

Zan(:c—a)”:a0+a1(:c—a)—|—a2(x—a)2+-~—|—an(m—a)"+--~

n=0

We’ll see next that power series centered at a number a have intervals of convergence centered
around a, that is, the series will converge if z lies between a — r and a + r where r is half the
length of the interval. This number 7 is called the radius of convergence.

Finding the radius of convergence. There’s a version of the ratio test which will usually
be able to tell us what the radius of convergence of a power series is. It doesn’t work for all
possible power series, but it does for all the important ones.

Treat z as a constant and apply the usual ratio test in conjunction with the absolute

convergence test on a power series Z a,(x —a)" centered at a. Suppose that the absolute
n=0

value of the ratio of the next term to the present term has a limit L.

np1(x — a)" ! (n i1
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L = lim

n—00
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|z —al = |z — a] lim
n— o0

an(x —a)? "
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Let 7 be the reciprocal of lim |—*X| Then L = |z — al/r.
n—o0 an

Now, if L < 1, the series absolutely converges, but if L > 1 it diverges. In terms of r, that
says |x — a| < r, then the series absolutely converges, but if |z — a| > 7 it diverges by the
term test. In other words the power series converges in an interval centered at a with radius
r. Thus, we’ve proven the following theorem.

Theorem 1 (Abel). If the ratio |a,1/a,| of the absolute values of the coefficients of a power
series has a limit, then the reciprocal of that limit is the radius of convergence of the power

o0
. . . . . . An41 .
series. More precisely, if the series is E an(r —a)", and lim = —, then the series
0 n—oo Qp, T
n=

absolutely converges for € (a — r,a + r), and the series diverges for |z — a| > r.

Note that this theorem says nothing about convergence at the endpoints of the interval
of convergence. Those two values, x = a £ r, need to be checked separately for convergence.

x —3)".

Example 2. Consider the power series E o (
n n
n=1
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So the radius of convergence is 2, and the interval of convergence goes from 1 to 5.
o0

1
Now let’s check the two endpoints for convergence. At x = 5 the series is g —, the
n
SV
harmonic series, which we know diverges. At x = 2 the series is , the alternating
n
n=1

harmonic series, which we know converges. Thus, the interval of convergence for this series
is the half open interval [2,5).

Extension of the theory to complex numbers. Everything mentioned so far applies
only to real numbers, but it can all be extended to complex numbers. In particular, consider
o

the last theorem. Let a complex power series be Z a,(z — a)", where a and each a, is a

n=0
. . . An+1 .
complex number and z is a complex variable. If lim = —, then the series converges
n—oo an T

when |z —a| < r, that is, it converges in a circle centered at the point a with radius r. (Note
that the limit is the limit of real numbers and r is a real number.)

For example, the series in the last example converges inside the circle of radius 2 centered
at 3. It will diverge outside that circle. It will converge for some points on the circle and
diverge for others.
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