
Change of coordinates
Math 130 Linear Algebra

D Joyce, Fall 2015

The coordinates of a vector v in a vector space
V with respect to a basis β = {b1,b2, . . . ,vb} are
those coefficients ci which uniquely express v as as
linear combination of the basis vectors

v = v1b1 + v2b2 + · · ·+ vnbn.

These coefficients v1, v2, . . . , vn are called coordi-
nates with respect to the basis β. The column vec-
tor of these coordinates is denoted [v]β.

[v]β =


v1
v2
...
vn


When the basis is the standard basis for F n

ε = {e1, e2, . . . , en},

then the coordinates [v]ε of a vector v =
(v1, v2, . . . , vn) are just the usual coordinates of v.

[v]ε =


v1
v2
...
vn


Changing between standard coordinates
with respect to another. Take the case when
V is F n and the basis β is not the standard basis
ε. We may have the standard coordinates of a vec-
tor and want the β coordinates of it, or vice versa.
How do we convert back and forth?

There’s a transition matrix for that. Let the
β-basis vector bj have standard coordinates bj =
(b1j, b2j, . . . , bnj), so

[bj]ε =


b1j
b2j
...
bnj


Collect these in the columns of a matrix Pε←β to
form a transition matrix.

Pε←β =


b11 b12 . . . b1n
b21 b22 . . . b2n
...

...
. . .

...
bn1 bn2 . . . bnn


Now, the β-coordinates for bj are all 0s except a
1 in the jth coordinate, so multiplying Pε←β by the
column matrix [bj]β picks out the jth column, which
are the standard coordinates for bj, so Pε←β[bj]β =
[bj]ε.

More generally, for an arbitrary vector v in Fn,
the β-coordinates [v]β of v as a linear combination
of the basis vectors in β, so

Pε←β [v]β = [v]ε.

Thus, the transition matrix Pε←β converts from
β coordinates to ε coordinates.

Unfortunately, it’s usually the reverse change of
coordinates that we want. But we can do that, too.

To convert the other way, just invert the matrix
Pε←β to get

Pβ←ε = (Pε←β)−1.

Then,
Pβ←ε [v]ε = [v]β.

Example 1. A low-dimensional example will help
explain things. Let β = {b1,b2} be a basis of R2

where b1 = (3, 1) and b2 = (−4, 2).
In the figure, the standard coordinates are shown

with black axes and a yellow grid, while the β-
coordinates are shown with blue axes and a cyan
grid.
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The transition matrix is

Pε←β =

[
3 −4
1 2

]
and its inverse is

Pβ←ε = (Pε←β)−1 =

[
0.2 0.4
−0.1 0.3

]
Take a typical vector v, say v = (2, 3). Then its

β-coordinates are

[v]β = Pβ←ε[v]ε =

[
0.2 0.4
−0.1 0.3

] [
2
3

]
=

[
1.6
0.7

]
The same vector v in the plane can be described in
two ways. In standard coordinates go 2 e1’s (2 units
right) and 3 e2’s (3 units up), or in β-coordinates,
go 1.6 b1’s and 0.7 b2’s.

Example 2. A three-dimensional case. Let V =
R3, and consider the basis β = {b1,b2,b3} where
b1 = (−1, 1, 1), b2 = (1,−1, 1), and b3 =
(1, 1,−1). The transition matrix which converts β-
coordinates to standard ε-coordinates puts the bj’s
in columns

Pε←β =

 −1 1 1
1 −1 1
1 1 −1



Suppose we had the β-coordinates for a vector, say
the vector v = 2b1 + 3b2 + 4b3. Its β-coordinates

are [v]β =

2
3
4

. We can use Pε←β to convert those

to standard ε-coordinates:

[v]ε = Pε←β[v]β

=

−1 1 1
1 −1 1
1 1 −1

2
3
4

 =

5
3
1


Therefore, as a 3-tuple, v is (5, 3, 1).

The inverse of the matrix Pε←β is the matrix
Pβ←ε, and it can be computed by the methods de-
scribed before. You’ll find

Pβ←ε =

 0 1/2 1/2
1/2 0 1/2
1/2 1/2 0


Using that matrix we can convert from standard
ε-coordinates to β-coordinates. For example, if we
take standard coordinates for the vector v we had

before, [v]ε =

5
3
1

, and multiply on the left by

Pβ←ε, we should get the β-coordinates we started
with

[v]β = Pβ←ε[v]ε

=

 0 1/2 1/2
1/2 0 1/2
1/2 1/2 0

5
3
1

 =

2
3
4


Changing between coordinates with respect
to two different bases. How do you convert be-
tween coordinates [v]γ of a vector v with respect to
a basis γ and coordinates [v]β with respect to a
different basis β?

One way is to do the same as we just did where
the basis γ replaces the standard basis ε. Start
by finding the coordinates of the basis vectors of
β with respect to the basis γ. Then put them in
columns in a matrix, which we denote Pγ←β. And
we get analogous results:

[v]γ = Pγ←β [v]β
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but for two different bases γ and β. If you want the
reverse change of coordinates, invert the matrix.

Pβ←γ = (Pγ←β)−1.

Then,
Pβ←γ [v]γ = [v]β.

In the case that the vector space V is F n, we can
use the standard basis as an intermediate step. We
can also compute Pγ←β as a composition

Pγ←β = Pγ←ε Pε←β = (Pε←γ)
−1Pε←β

which is easy to use since the columns of Pε←γ and
Pε←β are the basis vectors of γ and of β, respec-
tively.

Matrix representation of linear operators.
A linear operator is just a linear transformation
T : V → V from a vector space to itself. In order
to represent a linear transformation between two
different vector spaces, you need to choose a basis
for each, but for linear operators, only one basis β
for V is needed. If you choose a different basis γ
for V , you’ll get a different matrix.

If the matrix [T ]ββ represents T for the basis β,
how can you find the matrix [T ]γγ that represents T
for the basis γ? Answer, just use the two change of
coordinate matrices Pγ←β and Pγ←β.

If you start with a vector [v]γ in γ-coordinates,
first hit it with Pβ←γ to get it in β-coordinates.

Now you’ve got [v]β, so hit that with [T ]ββ to get
[T (v)]β. Finally, hit that with Pγ←β to get [T (v)]γ.
Thus,

[T ]γγ = Pγ←β[T ]ββPβ←γ.

Since (Pγ←β) = P−1β←γ, we can also write that equa-
tion as

[T ]γγ = P−1β←γ[T ]ββPβ←γ.

This observation yields the following theorem
where the matrix Q in the statement is the transi-
tion matrix Pβ←γ[T ].

Theorem 3. Two matrices A and B represent the
same linear operator if and only if there is an in-
vertible matrix Q such that

B = Q−1AQ.

Similar matrices and equivalence relations.
Knowing when two matrices represent the same lin-
ear operator is so important that there’s a name for
them.

Definition 4. Two square matrices A and B are
said to be similar or conjugate when there is an
invertible matrix Q such that B = Q−1AQ. We’ll
denote similar matrices A ∼ B.

With that definition, we can summarize the pre-
vious theorem as saying similar matrices represent
the same linear operator.

Similarity is a binary relation that has three im-
portant properties

• Reflexivity. Any square matrix is similar to
itself. A ∼ A.

• Symmetry. If one matrix is similar to another,
then the other is similar to it. A ∼ B implies
B ∼ A.

• Transitivity. If one matrix is similar to an-
other, and the second is similar to the third,
then the first is similar to the third. A ∼ B
and B ∼ C imply A ∼ C.

Any binary relation that has these three proper-
ties is called an equivalence relation.

Equivalence relations occur throughout mathe-
matics. You’re familiar with a few of them. For ex-
ample, similarity of triangles in geometry. Also con-
gruence of triangles. In calculus, having the same
derivative is an equivalence relation although it’s
usually not called an equivalence relation in a cal-
culus course. In number theory, congruence modulo
n is an equivalence relation.

Outside of mathematics equivalence relations are
common, too. Being the same height, being on the
same basketball team in a sports league, and hav-
ing the same parents are three different equivalence
relations.

In fact, the word “same” indicates there’s an as-
sociated equivalence relation.

Math 130 Home Page at
http://math.clarku.edu/~ma130/
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