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Rotations are important linear operators, but
they don’t have real eigenvalues. They will, how-
ever, have complex eigenvalues.

Eigenvalues for linear operators are so important
that we’ll extend our scalars from R to C to ensure
there are enough eigenvalues.

Two nice things about the field C of complex
numbers. The Fundamental Theorem of Algebra
states that if a polynomial with coefficients in C has
degree n, then it has all n roots (when multiplicities
are counted). Fields like C with that property are
called algebraically closed fields.

In the early 1700s mathematicians noticed a
connection between logarithms and the arctangent
function. Euler explained the connection more sim-
ply using the complex exponential function by a
formula now known as Euler’s formula:

eiθ = cos θ + i sin θ

Euler used the power series to define the complex
exponential function, and his formula directly di-
rectly follows by examining that power series and
the series for cosine and sine. We’ll occasionally use
his formula.

Example 1. We’ll look at general rotations in the
next example , but let’s warm up with a counter-
clockwise rotation by 90◦. That’s the matrix trans-
formation x 7→ Ax, where

A =

[
0 −1
1 0

]
,

Its characteristic polynomial is det(A − λI) which
equals ∣∣∣∣−λ −1

1 −λ

∣∣∣∣ = λ2 + 1.

There are no real roots of this polynomial λ2 + 1,
only the imaginary roots ±i. Thus this rotation
has no real eigenvalues and no real eigenvectors.

How can we continue on? We can treat the ma-
trix as a matrix over the complex numbers C in-
stead of just the real numbers R. Now it describes
a linear transformation C2 → C2. It has two com-
plex eigenvalues, ±i, that is, the spectrum for a 90◦

counterclockwise rotation is the set {i,−i}.
Let’s find the eigenvalues for the eigenvalue λ1 =

i. We’ll row-reduce the matrix A− λ1I.

A− λ1I =

[
−i −1
1 −i

]
∼

[
1 −i
0 0

]
Thus, the solutions to this system, that is, the λ1-
eigenspace, is the set of vectors in C2 of the form
(z, w) = (iw, w) where w is an arbitrary complex
number.

Likewise, you can show that the λ2-eigenspace,
where λ2 = −i, consists of vectors (z, w) =
(−iw, w) where w is arbitrary.

Example 2. Eigenvalues of a general rotation in
R2.

Recall that the matrix transformation x 7→ Ax,
where

A =

[
cos θ − sin θ
sin θ cos θ

]
,

describes a rotation of the plane by an angle of θ.
Let’s find the eigenvalues of this generic rota-

tion of the plane. The characteristic polynomial
is det(A− λI) which equals∣∣∣∣cos θ − λ − sin θ

sin θ cos θ − λ

∣∣∣∣ = (cos θ − λ)2 + sin2 θ.

We’ll set that to 0 and solve for λ. We quickly run
into problems, as

(cos θ − λ)2 = − sin2 θ

1



has no real solutions. Thus, there are no real eigen-
values for rotations (except when θ is a multiple of
π, that is the rotation is a half turn or the identity).

To get the missing eigenvalues, we’ll treat the
matrix as a matrix over the complex numbers C
instead of just the real numbers R. Then it de-
scribes a linear transformation C2 → C2, and we
can continue on.

cos θ − λ = ±i sin θ

λ = cos θ ± i sin θ = e±iθ

We get two complex eigenvalues. Each of these
will have an associated eigenspace. Let’s find the
eigenspace for λ1 = cos θ + i sin θ. We’ll solve the
equation (A−λ1)x = 0 by row-reducing the matrix
A− λ1I.

A− λ1I =

[
cos θ − sin θ
sin θ cos θ

]
− (cos θ + i sin θ)I

=

[
−i sin θ − sin θ

sin θ −i sin θ

]
∼

[
−i −1
1 −i

]
∼

[
1 −i
0 0

]
Thus, the generic solution to this system is (z, w) =
(iw, w) where w is an arbitrary complex number.

Generally speaking, finding the complex
eigenspaces for a rotation isn’t as important as
finding the eigenvalues.
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