
Composition of linear transformations
and matrix multiplication
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Throughout this discussion, F refers to a fixed
field. In application, F will usually be R. V , W ,
and X will be vector spaces over F .

Consider two linear transformations V
T→ W and

W
S→ X where the codomain of one is the same as

the domain of the other. Their composition V
S◦T−→

X is illustrated by the commutative diagram

V W

X

-
T

?

S

@
@
@
@
@R

S ◦ T

As each of T and S preserve linear combinations,
so will the composition, so S ◦ T is also a linear
transformation.

Coordinates again. When the vector spaces are
coordinatized, that is, when we have chosen a ba-
sis β for V , γ for W , and δ for X, we have iso-
morphisms φβ : V

'→ F p, φγW
'→ F n, and

φδ : X
'→ Fm.

Although we could do everything explicitly with
these isomorphisms, they really get in the way of
understanding. So instead, let’s just assume that
the vector spaces actually are F p, F n, and Fm, and
we have two linear transformations T : F p → F n

and S : F n → Fm.
Then F p T→ F n is represented by an n×p matrix

B, F n S→ Fm is represented by a m× n matrix A,

and their composition F p S◦T−→ Fm is represented by
some m × p matrix. We’ll define matrix multipli-
cation so that the product of the two matrices AB
represents the composition S ◦ T .

F p F n

Fm

-
B

?

A

@
@
@

@
@R

AB

Let’s see what the entries in the matrix product
AB have to be.

Let v be a vector in F p, then w = T (v) is a
vector in F n, and x = S(w) = (S ◦ T )(v) is a
vector in Fm.

The n× p matrix B represents T . Its jkth entry
is Bjk, and it was defined so that for each j,

wj =
∑
k

Bjkvk.

Likewise, the m × n matrix A represents S. Its
ijth entry is Aij, and it was defined so that for each
i,

xi =
∑
j

Aijwj.

Therefore

xi =
∑
j

Aij
∑
k

Bjkvk =
∑
k

(∑
j

AijBjk

)
vk.

Definition 1. Given an m × n matrix A and an
n × p matrix B, we define AB to be an m × p
matrix whose ikth entry is

(AB)ik =
∑
j

AijBjk.

With this definition, matrix multiplication corre-
sponds to composition of linear transformations.

A mnemonic for multiplying matrices. Al-
though the equation (AB)ik =

∑
j AijBjk is fine

for theoretical work, in practice you need a better
way to remember how to multiply matrices.

The entry Aij in a row of the first matrix needs to
be multiplied by the corresponding Bjk in a column
of the second matrix. If you place the matrix A to
the left of the product and place the matrixB above

1



the product, it’s easier to see what to multiply by
what.

Take, for instance, the following two 3 by 3 ma-
trices.

A =

4 5 6
3 −1 0
2 0 −2

 , B =

 2 1 1
0 4 5
−2 −3 0


Think of A as being made of three row vectors and
B as being made of three column vectors.

A =

4 5 6
3 −1 0
2 0 −2

 , B =

 2 1 1
0 4 5
−2 −3 0


 2 1 1

0 4 5
−2 −3 0


 4 5 6

3 −1 0
2 0 −2

  −4 6 29
6 −1 −2
8 8 2


To get an entry for the product, work with the row
in A to the left of it and the column of B above it.
For example, the upper left entry of the product,
work with the first row of A and the first column
of B; you’ll get 4 · 2 + 5 · 0 + 6 · (−2) = −4.

Systems of linear equations are linear matrix
equations. We’ll have a lot of uses for matrix
multiplication as the course progresses, and one of
the most important is the interpretation of a system
of linear equations as a single matrix equation.

Take, for example, the system of equations

5x+ 2y = 12

3x− y = 5

x+ 3y = 5

Let A be the coefficient matrix for this system, so
that

A =

 5 2
3 −1
1 3

 ,

and let b be the constant matrix (a column vector)
for this system, so that

b =

 12
5
5

 .
Finally, let x be the variable matrix for this system,
that is, a matrix (another column vector) with the
variables as its entries, so that

x =

[
x
y

]
.

Then the original system of equations is described
by the matrix multiplication Ax = b: 5 2

3 −1
1 3

[ x
y

]
=

 12
5
5


In general, each system of linear equations corre-

sponds to a single matrix equation

Ax = b

where A is the matrix of coefficients in the sys-
tem of equations, x is a vector of the variables in
the equations, and b is a vector of the constants
in the equations. This interpretation allows us to
interpret something rather complicated, namely a
whole system of equations, as a single equation.

Matrix products in Matlab. If A and B are
two matrices of the right size, that is, A has the
same number of columns that B has rows, then the
expression A*B gives their product. You can com-
pute powers of square matrices as well. If A is a
square matrix, then A^3 computes the same thing
as A*A*A.

Categories. Categories are higher order alge-
braic structures. We’ll look at a couple of cate-
gories. One will be the category of vector spaces
and linear transformations over a field, the other
the category of matrices over a field F . We’ll also
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consider the category of sets, but primarily just as
another example of categories.

Mathematics abounds with categories. There are
categories of topological spaces, of differentiable
spaces, of groups, of rings, etc.

The purpose of a category is to study the inter-
relations of its objects, and to do that the category
includes ‘morphisms’ (also called maps or arrows)
between the objects. In the case of the category of
vector spaces, the morphisms are the linear trans-
formations.

We’ll start with the formal definition of cate-
gories. Category theory was developed by Eilen-
berg and Mac Lane in the 1940s.

Definition 2. A category C consists of

1. objects often denoted with uppercase letters,
and

2. morphisms (also called maps or arrows) often
denoted with lowercase letters.

3. Each morphism f has a domain which is an
object and a codomain which is also an object.
If the domain of f is A and the codomain is

B, then we write f : A → B or A
f→ B. The

set of all morphisms from A to B is denoted
Hom(A,B).

4. For each object A there is a morphism 1A :
A→ A called the identity morphism on A.

5. Given two morphisms A
f→ B and B

g→ C
where the codomain of one is the same as the
domain of the other there is another morphism

A
g◦f−→ C called the composition of the two

morphisms. This composition is illustrated by
the commutative diagram

A B

C

-
f

?

g

@
@
@
@
@R

g ◦ f

6. for all A
f→ B, f ◦ 1A = f and 1B ◦ f = f .

These compositions are illustrated by the two
commutative diagrams

A

A B

?

1A

-
f

@
@
@

@
@R

f ◦ 1A

A B

B

-
f

?

1B

@
@

@
@
@R

1B ◦ f

7. for all A
f→ B, B

g→ C, and C
h→ D, (h ◦ g) ◦

f = h◦(g◦f). In the diagram below, if the two
triangles in the diagram each commute, then
the parallelogram commutes.

A B

C D

-
f

?

g

@
@

@
@
@R

g ◦ f
-

h

@
@

@
@
@R

h ◦ g

A diagram of objects and morphisms in a cate-
gory is said to commute, or be a commutative dia-
gram if any two paths of morphisms (in the direc-
tion of the arrows) between any two objects yield
equal compositions.

Isomorphisms in a category C. Although only
morphisms are defined in a category, it’s easy to
determine which ones are isomorphisms. A mor-
phism f : A→ B is an isomorphism if there exists
another morphism g : B → A, called its inverse,
such that f ◦ g = 1B and g ◦ f = 1A.

Example 3 (The categories of sets S). Although
we’re more interested in the category of vector
spaces right now, the category S of sets is also rel-
evant. An object in S is a set, and a morphism
in S is a function. The domain and codomain of
a morphism are just the domain and codomain of
the function, and composition is composition. If S
and T are two sets, then Hom(S, T ) is the set of all
functions S → T .
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Isomorphisms in the category of sets are bijec-
tions.

Example 4 (The category of vector spaces VF ).
Fix a field F . The objects in the category VF are
vector spaces over a F and the morphisms are linear
transformations. Different fields have different cat-
egories of vector spaces. Hom(V,W ) is the vector
space of linear transformations V → W . Since it’s
a vector space over F itself, it’s actually an object
in the category.

Isomorphisms in the category of vector spaces are
what we’ve been calling isomorphisms.

Example 5 (The category of matricesMF ). We’d
like the matrices over a fixed field F to be the mor-
phisms in this category. Composition will then be
multiplication of matrices. But then, what are the
objects?

The objects in MF are the vector spaces F n for
n = 0, 1, 2, . . .. A morphism F n → Fm is an m× n
matrix A. The composition of two matrices F p B→
F n and F n A→ Fm is the matrix product F p AB−→ Fm

as we defined it above.
The identity morphism F n → F n is the n × n

identity matrix I with 1’s down the diagonal and
0’s elsewhere.

Hom(F n, Fm) is the set of matrices we’ve de-
noted by Mmn.

The category MF of matrices is can be inter-
preted as a subcategory of the category of vector
spaces VF . It doesn’t include all the vector spaces,
as infinite dimensional vector spaces aren’t objects
of MF . Furthermore, MF doesn’t have any finite
dimensional vector spaces except those of the form
F n. We know, however, that every vector space V
of finite dimension n is isomorphic F n.

Note that the only isomorphisms F n → Fm in
MF occur when n = m.

Math 130 Home Page at
http://math.clarku.edu/~ma130/
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