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Throughout this discussion, F refers to a fixed
field. In application, F will usually be R.

We’ve seen how each linear transformation T :
F n → Fm corresponds to an m× n matrix A. The
matrix A is the standard matrix representing T and
its jth column consists of the coordinates of the vec-
tor T (ej) where ej is the jth vector in the standard
basis ε of F n.

We’ll use this connection as we derive algebraic
operations on linear transformations to translate
those operations to algebraic operations on matri-
ces.

Before we do that, however, we should see that
we can use use matrices to represent linear trans-
formations between other vector spaces so long as
we’ve got coordinates for them.

Extending the standard matrix to transfor-
mations T : V → W . Coordinates on vector
spaces are determined by bases for those spaces.

Recall that a basis β = (b1,b2, . . . ,bn) of a vec-
tor space V sets up a coordinate system on V . Each
vector v in V can be expressed uniquely as a linear
combination of the basis vectors

v = v1b1 + v2b2 + · · ·+ vnbn.

The coefficients in that linear combination form the
coordinate vector [v]β relative to β

[v]β =


v1
v2
...
vn



The function φβ : V → F n which sends v to [v]β is
an isomorphism.

Although an isomorphism doesn’t mean that V
is identical to F n, it does mean that coordinates
work exactly the same.

One place where this can be confusing is when
V is F n, but the basis β is not the standard ba-
sis. Having two bases for the same vector space is
confusing, but sometimes useful.

Matrices for transformations V → W . So far,
we can represent a transformation T : F n → Fm

by an m × n matrix A. The entries for A were
determined by what T did to the standard basis of
F n. The coordinates of T (ej) were placed in the
jth column of A. It followed that for any vector v
in F n, the ith coordinate of it’s image w = T (v)
was

wi = Ai1v1 + Ai2v2 + · · ·+ Aijvn =
n∑
j=1

Aijvj

We can represent a transformation T : V → W
by a matrix as well, but it will have to be relative
to one basis β for V and another basis γ for W .
Suppose that β = (b1,b2, . . . ,bn) is an ordered
basis for V and γ = (c1, c2, . . . , cm) is an ordered
basis for W . We’ll put the γ-coordinates of the
T (bj) in the jth column of A, just like we did before.
If we need to indicate the bases that were used to
create the matrix A, we’ll write A = [T ]γβ.

What we’ve actually done here was that we used
the isomorphisms φβ : V → Rn and φγ : V → Rm

to transfer the linear transformation T : V → W
to a linear transformation T ′ : Rn → Rm. Define
T ′ as φγ ◦ T ◦ φ−1β .

V W

Rn Rm

-T

-T ′?

φβ

?

φγ
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Whereas T describes the linear transformation
V → W without mentioning the bases or coor-
dinates, T ′ describes the linear transformation in
terms of coordinates. We used those coordinates to
describe the entries of the matrix A = [T ]γβ.

The vector space of linear transformations
HomF (V,W ). Let’s use the notation HomF (V,W )
for the set of linear transformations V → W , or
more simply Hom(V,W ) when there’s only one field
under consideration.

This is actually a vector space itself. If you have
two transformations, S : V → W and T : V → W ,
then define their sum by

(S + T )(v) = S(v) + T (v).

Check that this sum is a linear transformation by
verifying that

(1) for two vectors u and v in V ,

(S + T )(u + v) = S(u + v) + S(u + v), and

(2) for a vector v and a scalar c,

(S + T )(cv) = c(S + T )(v).

Next, define scalar multiplication on Hom(V,W ) by

(cS)(v) = c(S)(v)

and show that’s a linear transformation.
There are still eight axioms for a vector space

that need to be checked to show that with these two
operations Hom(V,W ) is, indeed, a vector space.
But note how the operations of addition and scalar
multiplication were both defined by those opera-
tions on W . Since the axioms hold in W , they’ll
also hold in Hom(V,W ).

The vector space of matrices Mm×n(F ).
Mm×n(F ) is the set of m× n matrices with entries
in the field F . We’ll drop the subscript F when the
field is understood.

When V and W are endowed with bases β and
γ, we have a bijection φγβ : Hom(V,W )

'→ Mm×n

where a linear transformation T corresponds to the
matrix A = [T ]γβ. The entries Aij of A describe how
to express T evaluated at the β-basis vector bj as
a linear combination of the γ-basis vectors.

(bj) =
∑

Aijci

We’ll use this bijection φγβ to define addition and
scalar multiplication on Mm×n, and when we do
that, φγβ will be an isomorphism of vector spaces.

First consider addition. Given T : V → W and
S : V → W . Let A = [T ]γβ be the standard matrix
for T , and let B = [S]γβ be the standard matrix for
S. Then

T (bj) =
∑
i

Aijci, and

S(bj) =
∑
i

Bijci. Therefore

(T + S)(bj) =
∑
i

(Aij +Bij)ci.

Thus, the entries in the standard matrix for T + S
are sums of the corresponding entries of the stan-
dard matrices for T and S. We now know how we
should define addition of matrices.

Definition 1. We define addition of two m × n
matrices coordinatewise: (A+B)ij = Aij +Bij.

Next, consider scalar multiplication. Given a
scalar c and a linear transformation T : V → W ,
let A be the standard matrix for T . Then

T (bj) =
∑
i

Aijci. Therefore

(cT )(bj) =
∑
i

cAijci.

Thus, the entries in the standard matrix for cT are
each c times the corresponding entries of the stan-
dard matrice for T . We now know how we should
define scalar multiplication of matrices.

Definition 2. We define scalar multiplication of a
scalar c and an m × n matrix A coordinatewise:
(cA)ij = cAij.

With these definitions of addition and scalar mul-
tiplication, Mm×n(F ) becomes a vector space over
F , and it is isomorphic to HomF (V,W ).
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Invariants. Note that the isomorphism

Hom(V,W ) ∼= Mm×n

depends on the ordered bases you choose. With
different β and γ you’ll get different matrices for
the same transformation.

In some sense, the transformation holds intrin-
sic information, while the matrix is a description
which varies depending on the bases you happen to
choose.

When you’re looking for properties of the trans-
formation, they shouldn’t be artifacts of the chosen
bases but properties that hold for all bases.

When we get to looking for properties of trans-
formations, we’ll make sure that they’re invariant
under change of basis.

Math 130 Home Page at
http://math.clarku.edu/~ma130/
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