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Eigenvalues and eigenvectors. We’re looking
at linear operators on a vector space V , that is,
linear transformations x 7→ T (x) from the vector
space V to itself.

When V has finite dimension n with a specified
basis β, then T is described by a square n×n matrix
A = [T ]β.

We’re particularly interested in the study the ge-
ometry of these transformations in a way that we
can’t when the transformation goes from one vec-
tor space to a different vector space, namely, we’ll
compare the original vector x to its image T (x).

Some of these vectors will be sent to other vectors
on the same line, that is, a vector x will be sent to
a scalar multiple λx of itself.

Definition 1. For a given linear operator T : V →
V , a nonzero vector x and a constant scalar λ are
called an eigenvector and its eigenvalue, respec-
tively, when T (x) = λx. For a given eigenvalue
λ, the set of all x such that T (x) = λx is called
the λ-eigenspace. The set of all eigenvalues for a
transformation is called its spectrum.

When the operator T is described by a matrix
A, then we’ll associate the eigenvectors, eigenval-
ues, eigenspaces, and spectrum to A as well. As
A directly describes a linear operator on F n, we’ll
take its eigenspaces to be subsets of F n.

Theorem 2. Each λ-eigenspace is a subspace of V .

Proof. Suppose that x and y are λ-eigenvectors and
c is a scalar. Then

T (x+cy) = T (x)+cT (y) = λx+cλy = λ(x+cy).

Therefore x + cy is also a λ-eigenvector. Thus,
the set of λ-eigenvectors form a subspace of F n.

q.e.d.

One reason these eigenvalues and eigenspaces are
important is that you can determine many of the
properties of the transformation from them, and
that those properties are the most important prop-
erties of the transformation.

These are matrix invariants. Note that the
eigenvalues, eigenvectors, and eigenspaces of a lin-
ear transformation were defined in terms of the
transformation, not in terms of a matrix that de-
scribes the transformation relative to a particu-
lar basis. That means that they are invariants of
square matrices under change of basis. Recall that
if A and B represent the transformation with re-
spect to two different bases, then A and B are con-
jugate matrices, that is, B = P−1AP where P is
the transition matrix between the two bases. The
eigenvalues are numbers, and they’ll be the same
for A and B. The corresponding eigenspaces will
be isomorphic as subspaces of F n under the linear
operator of conjugation by P . Thus we have the
following theorem.

Theorem 3. The eigenvalues of a square matrix A
are the same as any conjugate matrix B = P−1AP
of A. Furthermore, each λ-eigenspace for A is iso-
morphic to the λ-eigenspace for B. In particular,
the dimensions of each λ-eigenspace are the same
for A and B.

When 0 is an eigenvalue. It’s a special situa-
tion when a transformation has 0 an an eigenvalue.
That means Ax = 0 for some nontrivial vector x.
In general, a 0-eigenspaces is the solution space of
the homogeneous equation Ax = 0, what we’ve
been calling the null space of A, and its dimension
we’ve been calling the nullity of A. Since a square
matrix is invertible if and only if it’s nullity is 0, we
can conclude the following theorem.

Theorem 4. A square matrix is invertible if and
only if 0 is not one of its eigenvalues. Put another
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way, a square matrix is singular if and only if 0 is
one of its eigenvalues.

An example transformation that has 0 as an
eigenvalue is a projection, like (x, y, z) 7→ (x, y, 0)
that maps space to the xy-plane. For this projec-
tion, the 0-eigenspace is the z-axis.

When 1 is an eigenvalue. This is another im-
portant situation. It means the transformation has
a subspace of fixed points. That’s because vector x
is in the 1-eigenspace if and only if Ax = x.

An example transformation that has 1 as an
eigenvalue is a reflection, like (x, y, z) 7→ (x, y,−z)
that reflects space across the xy-plane. Its 1-
eigenspace, that is, its subspace of fixed points, is
the xy-plane. We’ll look at reflections in R2 in de-
tail in a moment.

Another transformation with 1 as an eigenvalue
is the shear transformation (x, y) 7→ (x + y, y). Its
1-eigenspace is the x-axis.

Eigenvalues of reflections in R2. We’ve looked
at reflections across some lines in the plane. There’s
a general form for a reflection across the line of slope
tan θ, that is, across the line that makes an angle
of θ with the x-axis. Namely, the matrix transfor-
mation x 7→ Ax, where

A =

[
cos 2θ sin 2θ
sin 2θ − cos 2θ

]
,

describes a such a reflection.

A reflection has fixed points, namely, the points
on the line being reflected across. Therefore, 1 is
an eigenvalue of a reflection, and the 1-eigenspace
is the line of reflection.

Orthogonal to that line is a line passing through
the origin and its points are reflected across the
origin, that is to say, they’re negated. Therefore,
−1 is an eigenvalue, and the orthogonal line is its
eigenspace. Reflections have only these two eigen-
values, ±1.

The characteristic polynomial, the main tool
for finding eigenvalues. How do you find what
values the eigenvalues λ can be? In the finite di-
mensional case, it comes down to finding the roots
of a particular polynomial, called the characteristic
polynomial.

Suppose that λ is an eigenvalue of A. That means
there is a nontrivial vector x such that Ax = λx.
Equivalently, Ax−λx = 0, and we can rewrite that
as (A − λI)x = 0, where I is the identity matrix.
But a homogeneous equation like (A−λI)x = 0 has
a nontrivial solution x if and only if the determinant
of A−λI is 0. We’ve shown the following theorem.

Theorem 5. A scalar λ is an eigenvalue of A if and
only if det(A−λI) = 0. In other words, λ is a root
of the polynomial det(A − λI), which we call the
characteristic polynomial or eigenpolynomial. The
equation det(A−λI) = 0 is called the characteristic
equation of A.

Note that the characteristic polynomial has de-
gree n. That means that there are at most n eigen-
values. Since some eigenvalues may be repeated
roots of the characteristic polynomial, there may
be fewer than n eigenvalues.

Another reason there may be fewer than n val-
ues is that the roots of the eigenvalue may not lie
in the field F . That won’t be a problem if F is
the field of complex numbers C, since the Funda-
mental Theorem of Algebra guarantees that roots
of polynomials lie in C.

We can use characteristic polynomials to give
an alternate proof that conjugate matrices have
the same eigenvalues. Suppose that B = P−1AP .
We’ll show that the characteristic polynomials of A
and B are the same, that is,

det(A− λI) = det(B − λI).

That will imply that they have the same eigenval-
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ues.

det(B − λI) = det(P−1AP − λI)

= det(P−1AP − P−1λIP )

= det(P−1(A− λI)P )

= det(P−1) det(A− λI) det(P )

= det(A− λI)

How to find eigenvalues and eigenspaces.
Now we know the eigenvalues are the roots of the
characteristic polynomial. We’ll illustrate this with
an example. Here’s the process to find all the eigen-
values and their associated eigenspaces.

1). Form the characteristic polynomial

det(A− λI).

2). Find all the roots of it. Since it is an nth de-
gree polynomial, that can be hard to do by hand if n
is very large. Its roots are the eigenvalues λ1, λ2, . . ..

3). For each eigenvalue λi, solve the matrix equa-
tion (A− λiI)x = 0 to find the λi-eigenspace.

Example 6. We’ll find the characteristic polyno-
mial, the eigenvalues and their associated eigenvec-
tors for this matrix:

A =

 1 0 0
−3 3 0
3 2 2


The characteristic polynomial is

|A− λI| =

∣∣∣∣∣∣
1− λ 0 0
−3 3− λ 0
3 2 2− λ

∣∣∣∣∣∣
= (1− λ)(3− λ)(2− λ).

Fortunately, this polynomial is already in factored
form, so we can read off the three eigenvalues: λ1 =
1, λ2 = 3, and λ3 = 2. (It doesn’t matter the order
you name them.) Thus, the spectrum of this matrix
is the set {1, 2, 3}.

Let’s find the λ1-eigenspace. We need to solve
Ax = λ1x. That’s the same as solving (A−λ1I)x =

0. The matrix A− λ1I is 0 0 0
−3 2 0
3 2 1


which row reduces to1 0 1

6

0 1 1
4

0 0 0


and from that we can read off the general solution

(x, y, z) = (−1
6
z,−1

4
z, z)

where z is arbitrary. That’s the one-dimensional
1-eigenspace (which consists of the fixed points of
the transformation).

Next, find the λ2-eigenspace. The matrix A−λ2I
is −2 0 0

−3 0 0
3 2 −1


which row reduces to1 0 0

0 1 −1
2

0 0 0


and from that we can read off the general solution

(x, y, z) = (0, 1
2
z, z)

where z is arbitrary. That’s the one-dimensional
3-eigenspace.

Finally, find the λ3-eigenspace. The matrix A−
λ3I is −1 0 0

−3 1 0
3 2 0


which row reduces to1 0 0

0 1 0
0 0 0


and from that we can read off the general solution

(x, y, z) = (0, 0, z)

where z is arbitrary. That’s the one-dimensional
2-eigenspace.
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Math 130 Home Page at
http://math.clarku.edu/~ma130/
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