Norm and inner products in R"
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So far we’ve concentrated on the operations of
addition and scalar multiplication in R™ and, more
generally, in abstract vector spaces.

There are two other algebraic operations on R”
we mentioned early in the course, and now it’s time
to look at them in more detail.

One of them is the length of a vector, more com-
monly called the norm of a vector. The other is a
kind of multiplication of two vectors called the in-
ner product or dot product of two vectors. There’s a
connection between norms and inner products, and
we’ll look at that connection.

Today we’ll restrict our discussion of these con-
cepts to R”™, but later we’ll abstract these concepts
to define inner product spaces in general.

The norm, or length, ||v| of a vector v. Con-
sider a vector v = (v, ;) in the plane R?. By the
Pythagorean theorem of plane geometry, the dis-
tance ||(v1,v9)|| between the point (vy,vs) and the
origin (0,0) is

(1, v2)ll = /0 + 3.

Thus, we define the length or norm of a vector v =

(v1,v9) as being
\/ v + V3.

The norm of a vector is sometimes denoted |v|
rather than ||v||.
Norms are defined for R™ as well
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In many ways, norms act like absolute values.
For instance, the norm of any vector is nonnegative,
and the only vector with norm 0 is the 0 vector.
Like absolute values, norms are multiplicative in
the sense that

levil = lel vl

when ¢ is a real number and v is a real vector.
There’s also a triangle inequality for norms

lw = vl < Iwl[ + [lv].

Here’s a geometric argument for the triangle in-
equality. If you draw a triangle with one side being
the vector v, and another side the vector w, then
the third side is w—v. Then the triangle inequality
just says that one side of a triangle is less than or
equal to the sum of the other two sides. Equality
holds when the vectors v and w point in the same
direction.

Later, we’ll prove the triangle inequality alge-
braically.

The inner product (v|w) of two vectors. This
are also commonly called a dot product and denoted
with the alternate notation v - w.

We’ll start by defining inner products alge-
braically, then see what they mean geometrically.

The inner product (v|w) of two vectors v and w
in R™ is the sum of the products of corresponding
coordinates, that is,
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Notice right away that we can interpret the
square of the length of the vector as an inner prod-
uct. Since

VI = v} + v+ +vp,

therefore
Iv[* = (v|v).

Because of this connection between norm and inner
product, we can often reduce computations involv-
ing length to simpler computations involving inner
products.

The inner product acts like multiplication in a
lot of ways, but not in all ways. First of all, the in-
ner product of two vectors is a scalar, not another
vector. That means you can’t even ask if it’s as-
sociative because the expression ((u|v)|w) doesn’t
even make sense; (u|v) is a scalar, so you can’t take
its inner product with the vector w.

But aside from associativity, inner products act
a lot like ordinary products. For instance, inner
products are commutative:

(ulv) = (viu).
Also, inner products distribute over addition,
(ulv +w) = (ulv) + (u|w),
and over subtraction,
(ulv —w) = (ufv) — (ulw),

and the inner product of any vector and the 0 vec-
tor is 0
(v|0) = 0.

Furthermore, inner products and scalar products
have a kind of associativity, namely, if ¢ is a scalar,
then

(cu|v) = c{u|v) = (ulev).

These last few statements can be summarized by
saying that inner products are linear in each coor-
dinate, or that inner products are bilinear opera-
tions.

The inner product of two vectors and the
cosine of the angle between them. For this
discussion, we’ll restrict our attention to dimension
2 since we know a lot of plane geometry.

The law of cosines for oblique triangles says that
given a triangle with sides a, b, and ¢, and angle 6
between sides a and b,

= a®+b* = 2abcosh.

Now, start with two vectors v and w, and place
them in the plane with their tails at the same point.
Let 6 be the angle between these two vectors. The
vector that joins the head of v to the head of w is
w — v. Now we can use the law of cosines to see
that

W -V
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[w = v = [[v]]* + [w]* = 2[[v] | wl]| cos 6.

We can convert the distances to inner products to
simplify this equation.

Iw=v[* = (w-vlw-v)
= (wlw) = 2(w|v) + (v[v)

= [wl* = 2(wlv) + [Iv]*

Now, if we subtract ||v||*> + ||[w||* from both sides
of our equation, and then divide by —2, we get

(viw) =[]l lw][ cos 6.



That gives us a way of geometrically interpreting
the inner product. We can also solve the last equa-
tion for cos®,
v|w

cosf = —< [w) )
v wll
which will allow us to do trigonometry by means of
linear algebra. Note that

(v[w)

6 = arccos (—) .
[V [[w]]

Orthogonal vectors. The word “orthogonal” is
synonymous with the word “perpendicular,” but for
some reason is preferred in many branches of math-
ematics. We'll write w L v if the vectors w and v
are orthogonal, or perpendicular.

Two vectors are orthogonal if the angle between
them is 90°. Since the cosine of 90° is 0, that means

w L v if and only if (w|v) =0

Vectors in MATLAB. You can easily find the
length of a vector in MATLAB; where the length
of a vector is called its norm. Let’s find the length
of two vectors and the angle between them using
the formula

Note that arccosines are computed with the acos
function, and inner products with the dot function

>> u = [3 4]

ans =
5
>> v = [6 12]
V=
5 12

>> norm (v)

ans =
13

>> dot (u,v)

ans =
63

>> costheta = dot(u,v)/(norm(u)*norm(v))

costheta =
0.9692

>> acos(costheta)

ans =
0.2487

Thus, the angle between the vectors (3,4) and
(5,12) is 0.2487 radians.
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