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We defined a vector space as a set equipped with
the binary operations of addition and scalar mul-
tiplication, a constant vector 0, and the unary op-
eration of negation, which satisfy several axioms.
Here are the axioms again, but in abbreviated form.

They hold for all vectors v and w and for all scalars
c and d.

l.v+w=w+vVv

c(dv) = (cd)v
c(v+w)=cv+cw
8. (c+d)v=cv+dv

There are a lot of other properties we want these op-
erations to have, but those aren’t included among
the axioms because they can be proved from them.

The set of axioms was selected so that (1) there
are no redundancies in the sense that no one axiom
can be proved from the rest, (2) everything we want
can be proved from the axioms, and (3) each axiom
is short and easy to understand.

There are alternative sets of axioms that could
be used instead. For example, the first two axioms
could be replaced by the single axiom (u+v)+w =
v+ (w+u). In the presence of axiom 3, it’s equiv-
alent to the first two axioms taken together. There
are a couple of reasons to prefer the two separate
axioms 1 and 2. Axiom 1 only involves rearrang-
ing the terms, while axiom 2 doesn’t change the
order of the terms but reparenthesizes the expres-
sion. Thus, the two axioms address different con-
cepts. The other reason for separating them is that

2. (u+v)+w=u+(v+w)
3. v+0=v=0+v

4. v+ (—-v)=0

5. lv=v

6.

7.

there are mathematical operations that satisfy as-
sociativity but not commutativity. An example of
that is composition of functions.

There’s also a choice of which operations on vec-
tor spaces to axiomatize. Here we used addition
and scalar multiplication. Alternatively, subtrac-
tion and scalar multiplication could be used. Ad-
dition was used because, in some sense, addition is
a more basic operation than subtraction.

Properties that follow from the axioms.
There are many of them. Here are some basic ones.

a. The sum of a finite list of vectors vi, vo, ..., vy
can be computed in any order, and fully parenthe-
sized in any way, and the sum will be the same.

b. v+ w = 0 if and only if w = —v.

c. The negation of 0 is 0: —0 = 0.

d. The negation of the negation of a vector is
the vector itself: —(—v) =v.

e. If v+ 2z = v, then z = 0. Thus, 0 is the only
vector that acts like 0.

f. Zero times any vector is the zero vector: Ov =
0 for every vector v.

g. Any scalar times the zero vector is the zero
vector: c0 = 0 for every real number c.

h. The only ways that the product of a scalar
and an vector can equal the zero vector are when
either the scalar is 0 or the vector is 0. That is, if
cv = 0, then either ¢ =0 or v = 0.

i. The scalar —1 times a vector is the negation
of the vector: (—1)v = —v.

We define subtraction in terms of addition by defin-
ing v — w as an abbreviation for v + (—w).

V—w=v+(—w)
All the usual properties of subtraction follow, such
as
jju+v=wifand onlyifu=w —v.
k. ¢(v—w)=cv—cw.
L (c—d)jv=cv—dv
We'll prove some of these in class. We won’t prove

the first one, a. We’ll look at some of the others
instead.


http://math.clarku.edu/~djoyce/ma130/vectorspace.pdf

The first one is important, however. It means we
don’t have to write parentheses when we're adding
several vectors and we can rearrange the terms how-
ever we like. It follows from the commutativity and
associativity axioms for addition. A formal proof
would involve mathematical induction and takes
time to formulate and construct.
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